Problem F. Faraway

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

A squad of n soldiers is dispatched to somewhere in Byteland. Currently, i-th soldier is at location $\left(x_{i}, y_{i}\right)$. The soldiers are going to set off now, but the target location is not so clear.
Assume the target location is at $\left(x_{e}, y_{e}\right)$. It is clear for all soldiers that x_{e} and y_{e} are both non-negative integers within the range $[0, m]$. Apart from that, for i-th soldier, the only thing he knows is that $\left(\left|x_{i}-x_{e}\right|+\left|y_{i}-y_{e}\right|\right) \bmod$ $k_{i}=t_{i}$.

To find the correct target location, these soldiers are working on the information they have now. Please write a program to figure out the number of possible target locations.

Input

The first line of the input contains an integer $T(1 \leq T \leq 10)$, denoting the number of test cases.
Each test case starts with a line containing two integers n and $m\left(1 \leq n \leq 10,1 \leq m \leq 10^{9}\right)$, denoting the number of soldiers and the upper bound for x_{e} and y_{e}.
Each of the next n lines contains four integers, x_{i}, y_{i}, k_{i}, and $t_{i}\left(0 \leq x_{i}, y_{i} \leq m, 2 \leq k_{i} \leq 5,0 \leq t_{i}<k_{i}\right)$, denoting what i-th soldier knows.

Output

For each test case, print a single line containing a single integer: the number of possible target locations.

Example

		standard input		standard output
2				10
2	5			
1	2	4	2	
3	1	2	1	
2	5			
1	2	4	2	
1	2	4	3	

