## Problem H. TDL

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

For a positive integer $n$, let us denote function $f(n, m)$ as the $m$-th smallest integer $x$ such that $x>n$ and $\operatorname{gcd}(x, n)=1$. For example, $f(5,1)=6$ and $f(5,5)=11$.
You are given the values of $m$ and $(f(n, m)-n) \oplus n$, where " $\oplus$ " denotes the bitwise XOR operation. Please write a program to find the smallest positive integer $n$ such that $(f(n, m)-n) \oplus n=k$, or determine it is impossible.

## Input

The first line of the input contains an integer $T(1 \leq T \leq 10)$, denoting the number of test cases.
Each test case is denoted by a single line containing two integers $k$ and $m\left(1 \leq k \leq 10^{18}, 1 \leq m \leq 100\right)$.

## Output

For each test case, print a single line containing a single integer: the smallest value of $n$. If there is no solution, output " -1 " instead.

## Example

|  | standard input |  | standard output |
| :--- | :--- | :--- | :--- |
| 2 | 5 | 5 |  |
| 3 | 100 | -1 |  |

