Problem K. Monster Hunter

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
512 mebibytes

Little Q is fighting against scary monsters in the game "Monster Hunter". The battlefield consists of n intersections, labeled by $1,2, \ldots, n$, connected by $n-1$ bidirectional roads like a tree. Little Q is now at intersection 1 and has X health points (HP).
There is a monster at each intersection except intersection 1. When Little Q moves to the k-th intersection for the first time, he must fight the monster at that intersection. During the fight, he will lose a_{i} HP. And when he finally beats the monster, he will be awarded b_{i} HP. Note that when HP becomes negative (<0), the game will end, so never let this happen. If Little Q visits the same intersection more than once, the fight happens only on the first visit, as monsters do not have an extra life.
When all monsters are cleared, Little Q will win the game. Please write a program to compute the minimum initial HP that can lead to victory.

Input

The first line of the input contains an integer $T(1 \leq T \leq 2000)$, denoting the number of test cases.
In each test case, there is one integer $n(2 \leq n \leq 100000)$ on the first line, denoting the number of intersections.
Each of the next $n-1$ lines contains two integers a_{i} and $b_{i}\left(0 \leq a_{i}, b_{i} \leq 10^{9}\right)$ describing monsters at intersections $2,3, \ldots, n$.

Each of the next $n-1$ lines contains two integers u and $v(1 \leq u, v \leq n, u \neq v)$ denoting a bidirectional road between intersection u and intersection v. It is guaranteed that the roads form a tree.

It is guaranteed that the sum of all n is at most 10^{6}.

Output

For each test case, print a single line containing an integer, denoting the minimum initial HP required to win the game.

Example

	standard input	standard output
1		3
4	6	
5	4	
6	2	
1	2	
2	3	
3		

