

Problem A. The One Polynomial Man

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

Is it a *programming* contest?

You are given a prime number p and two subsets S and V of residues from 0 to p-1. Your task is to find the number of pairs (a, b) that satisfy the following set of equations:

•
$$\left(\prod_{z \in V} \left(\frac{(2a+3b)^2 + 5a^2}{(3a+b)^2} + \frac{(2a+5b)^2 + 3b^2}{(3a+2b)^2} - z\right)\right) \equiv 0$$

• $a \in S$

 $\bullet \ b \in S$

All operations are performed modulo p. Note that, when $a \neq b$, the pairs (a, b) and (b, a) are considered different. Division by zero is not allowed: when any of the two denominators turns into a zero, the congruence is considered false.

Input

The first line contains a single integer p ($2 \le p \le 10^6$, p is prime).

The second line contains a single integer n: the size of S $(0 \le n \le p)$.

The third line contains n distinct integers S_1, S_2, \ldots, S_n : the elements of S $(0 \le S_i \le p-1)$.

The fourth line contains a single integer m: the size of V $(0 \le m \le p)$.

The fifth line contains m distinct integers V_1, V_2, \ldots, V_m : the elements of V $(0 \le V_i \le p - 1)$.

Output

Print one integer: the number of solutions.

Examples

standard input	standard output
7	8
4	
0456	
2	
2 3	
19	42
10	
0 3 4 5 8 9 13 14 15 18	
10	
2 3 5 9 10 11 12 13 14 15	