Problem A. The One Polynomial Man

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

Is it a programming contest?
You are given a prime number p and two subsets S and V of residues from 0 to $p-1$.
Your task is to find the number of pairs (a, b) that satisfy the following set of equations:

- $\left(\prod_{z \in V}\left(\frac{(2 a+3 b)^{2}+5 a^{2}}{(3 a+b)^{2}}+\frac{(2 a+5 b)^{2}+3 b^{2}}{(3 a+2 b)^{2}}-z\right)\right) \equiv 0$
- $a \in S$
- $b \in S$

All operations are performed modulo p. Note that, when $a \neq b$, the pairs (a, b) and (b, a) are considered different. Division by zero is not allowed: when any of the two denominators turns into a zero, the congruence is considered false.

Input

The first line contains a single integer $p\left(2 \leq p \leq 10^{6}, p\right.$ is prime $)$.
The second line contains a single integer n : the size of $S(0 \leq n \leq p)$.
The third line contains n distinct integers $S_{1}, S_{2}, \ldots, S_{n}$: the elements of $S\left(0 \leq S_{i} \leq p-1\right)$.
The fourth line contains a single integer m : the size of $V(0 \leq m \leq p)$.
The fifth line contains m distinct integers $V_{1}, V_{2}, \ldots, V_{m}$: the elements of $V\left(0 \leq V_{i} \leq p-1\right)$.

Output

Print one integer: the number of solutions.

Examples

standard input	standard output
$\begin{array}{llll} \hline 7 & & & \\ 4 & & & \\ 0 & 4 & 5 & 6 \\ 2 & & & \\ 2 & 3 & & \end{array}$	8
```19 1 0 0}30445%8981314 15 18 10 2```	42

