Problem G. AtCoder Quality Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have a set S of n elements. You want to paint each subset of S either red or blue. For each subset s of S, you know that the cost to paint it red is R_{s}, and the cost to paint it blue is B_{s}.
Note: you want to paint subsets, not the elements.
There is only one requirement:

- If a and b are two subsets of S of the same color, the subset $a \cup b$ has the same color as a and b.

Find the minimum total cost to paint all 2^{n} subsets.

Input

The first line contains a single integer $n(0 \leq n \leq 20)$, the number of elements.
The second line contains 2^{n} integers $R_{0}, R_{1}, \ldots, R_{2^{n}-1}\left(-10^{9} \leq R_{i} \leq 10^{9}\right)$, the costs to paint subsets red.
The third line contains 2^{n} integers $B_{0}, B_{1}, \ldots, B_{2^{n}-1}\left(-10^{9} \leq B_{i} \leq 10^{9}\right)$, the costs to paint subsets blue.
The subset $i\left(0 \leq i<2^{n}\right)$ is a subset consisting of elements j such that the j-th bit in the binary representation of i is 1 .

Output

Print one integer: the minimum cost to paint all subsets.

Examples

standard input	standard output
$\begin{array}{llll} 2 & & & \\ -5 & 9 & 9 & -5 \\ 10 & -8 & -6 & 3 \end{array}$	-16
$\begin{array}{llllllll} \hline 3 & & & & & & & \\ -15 & 19 & 19 & -5 & 30 & -3 & -16 & 13 \\ 29 & -6 & -14 & -7 & 24 & -5 & 18 & 11 \end{array}$	-22
$\begin{aligned} & \hline 0 \\ & -129363358 \\ & 227605714 \end{aligned}$	-129363358
$\begin{array}{ll} \hline 1 & \\ -120923470 & -355154745 \\ -18478014 & 104068715 \end{array}$	-476078215
	173

