Problem H. Mex on DAG

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
256 mebibytes

You are given a directed acyclic graph consisting of n vertices and $2 n$ edges. Each edge contains a single integer: more precisely, i-th edge contains the integer $\left\lfloor\frac{i}{2}\right\rfloor$. Edges are numbered from 0 to $2 n-1$. You need to find a simple path in this graph such that the value of the mex function of edges along this path is maximum possible.

We define the value of mex of a set of non-negative integers as the smallest non-negative integer which doesn't belong to this set. For example: $\operatorname{mex}(0,1,3)=2$.

Input

The first line contains a single integer $n(2 \leq n \leq 2000)$, the number of vertices.
The next $2 n$ lines contain description of the edges, from edge number 0 to edge number $2 n-1$. The line corresponding to the i-th edge specifies its endpoints: two integers a_{i} and $b_{i}\left(1 \leq a_{i}<b_{i} \leq n\right)$. Recall that the i-th edge contains the integer $\left\lfloor\frac{i}{2}\right\rfloor$.

Output

Print a single integer: the largest value of the mex function along some simple path in this graph.

Examples

standard input	standard output
$\begin{array}{ll} \hline 8 & \\ 3 & 6 \\ 2 & 7 \\ 1 & 3 \\ 2 & 3 \\ 6 & 7 \\ 7 & 8 \\ 7 & 8 \\ 4 & 6 \\ 2 & 7 \\ 1 & 5 \\ 2 & 5 \\ 2 & 8 \\ 6 & 8 \\ 7 & 8 \\ 3 & 5 \\ 7 & 8 \end{array}$	4
$\begin{array}{lll} \hline 15 & \\ 7 & 15 \\ 10 & 12 \\ 13 & 14 \\ 6 & 8 \\ 14 & 15 \\ 9 & 10 \\ 6 & 13 \\ 1 & 8 \\ 6 & 8 \\ 8 & 9 \\ 14 & 15 \\ 14 & 15 \\ 13 & 14 \\ 9 & 13 \\ 7 & 13 \\ 14 & 15 \\ 12 & 14 \\ 6 & 7 \\ 3 & 14 \\ 11 & 14 \\ 3 & 10 \\ 10 & 12 \\ 3 & 8 \\ 8 & 14 \\ 13 & 14 \\ 9 & 11 \\ 10 & 13 \\ 6 & 10 \\ 5 & 10 \\ 1 & 11 \\ 13 & 14 \end{array}$	3

