

Problem H. Mex on DAG

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

You are given a directed acyclic graph consisting of n vertices and 2n edges. Each edge contains a single integer: more precisely, *i*-th edge contains the integer $\lfloor \frac{i}{2} \rfloor$. Edges are numbered from 0 to 2n-1. You need to find a simple path in this graph such that the value of the *mex* function of edges along this path is maximum possible.

We define the value of *mex* of a set of non-negative integers as the smallest non-negative integer which doesn't belong to this set. For example: mex(0,1,3) = 2.

Input

The first line contains a single integer $n \ (2 \le n \le 2000)$, the number of vertices.

The next 2n lines contain description of the edges, from edge number 0 to edge number 2n - 1. The line corresponding to the *i*-th edge specifies its endpoints: two integers a_i and b_i $(1 \le a_i < b_i \le n)$. Recall that the *i*-th edge contains the integer $\lfloor \frac{i}{2} \rfloor$.

Output

Print a single integer: the largest value of the *mex* function along some simple path in this graph.

Examples

standard input	standard output
$ \begin{array}{r} 8 \\ 3 \\ 6 \\ 2 \\ 7 \\ 1 \\ 3 \\ 2 \\ 3 \\ 6 \\ 7 \\ 7 \\ 8 \\ 4 \\ 6 \\ 2 \\ 7 \\ 1 \\ 5 \\ 2 \\ 5 \\ 2 \\ 5 \\ 2 \\ 8 \\ 6 \\ 8 \\ 7 \\ 8 \\ 3 \\ 5 \\ 7 \\ 8 3 \\ 5 \\ 7 \\ 8 3 \\ 5 \\ 7 \\ 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 5 7 8 3 7 7 7 7 7 $	4
157101213146814159106131868914151314151214673141512146731411143101012388141314	3