Problem I. Find the Vertex

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

You are given a connected undirected graph with n vertices and m edges. The vertices are numbered from 1 to n. The vertex number s is the initial vertex. You don't know the number s, but you know all distances from vertex s to every other vertex including itself, taken modulo 3 . You have to find the number s.
The distance between two vertices is the length of the shortest path between them. The length of a path is the number of edges in it.

Input

The first line contains two integers n and $m(1 \leq n, m \leq 500000)$, the number of vertices and the number of edges. The second line contains n integers $d_{1}, d_{2}, \ldots, d_{n}\left(0 \leq d_{i} \leq 2\right)$. Here, d_{i} is the distance between vertices s and i, taken modulo 3.
The next m lines describe the edges. The i-th of these lines describes i-th edge and contains two integers u and v $(1 \leq u, v \leq n)$, the indices of vertices connected by this edge.
It is guaranteed that there are no self-loops and no multiple edges in the graph. Also, it is guaranteed that the graph is connected.

Output

Print the number s : the index of the initial vertex. If there are multiple answers, print any one of them.

Examples

standard input	standard output
56	2
10112	
54	
12	
32	
34	
42	
15	
66	1
012021	
12	
23	
34	
45	
56	
61	

Note

In the first sample, the array of lengths of paths between vertex 2 and all vertices is $[1,0,1,1,2]$. It is equal to the given array d.

In the second sample, the array of lengths of paths from vertex 1 is $[0,1,2,3,2,1]$. If we take each element modulo 3 , we will get the array d.

