## Boxes

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 3 seconds |
| Memory limit: | 512 megabytes |

You are given $n$ boxes of sizes $a_{1}, a_{2}, \ldots, a_{n}$. All box sizes are powers of two. In a box of size $r$, you can fit other boxes with a total size not exceeding $\frac{r}{2}$ (and similarly, in these boxes, you can fit other boxes, and so on). A box retains its fixed size regardless of the packing structure inside it.

Your task is to plan how to nest the boxes in such a way that the number of boxes not nested inside anything is minimized.

## Input

In the first line of standard input, there is a single integer $t(1 \leq t \leq 500000)$, indicating the number of test cases. The descriptions of the test cases are given in the next $2 t$ lines, and each of these descriptions consists of two lines.
The first line of the test case description contains one integer $n(1 \leq n \leq 100000)$, indicating the number of boxes.

The second line of the test case description contains a sequence of $n$ integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{12}\right.$; $a_{i}$ are powers of the number 2 with non-negative integer exponents), indicating the sizes of the subsequent boxes.

The sum of the values of $n$ for all test cases will not exceed 500000 .

## Output

The output should contain $t$ lines, and each of them should contain one integer. The number in the $i$-th line should indicate the minimum possible number of outer (i.e., not packed into any other) boxes in the $i$-th test case.

## Example

|  |  |  |  |  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  | 3 |  |
| 1 | 2 | 1 | 1 | 8 |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 4 | 1 | 2 |  |  |  |
| 3 |  |  |  |  |  |  |  |  |
| 8 | 4 | 2 |  |  |  |  |  |  |

## Note

Sample optimal box packings are shown below.
In the first test case:


In the second test case:


In the third test case:


In the fourth test case:


