Spectacle

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
The chess club is organizing a chess spectacle. The club has n chess players numbered from 1 to n, where the i-th one has a rating ${ }^{1} r_{i}$. In the spectacle, $2 k$ chess players will participate, who will be paired in k pairs, and in these pairs, they will simultaneously play k games. For the spectacle to be thrilling, the club wants the largest rating difference between the chess players in a pair to be as small as possible.
Your task is for every k from 1 to $\left\lfloor\frac{n}{2}\right\rfloor$ to calculate the smallest possible maximum rating difference of the chess players in a pair, if the club optimally chooses $2 k$ chess players and pairs them.

Input

In the first line of the standard input, there is one integer $n(2 \leq n \leq 200000)$, indicating the number of chess players.

In the second line, there are n integers, where the i-th one is $r_{i}\left(1 \leq r_{i} \leq 10^{18}\right)$, indicating the rating of the i-th player.

Output

In the only output line, there should be $\left\lfloor\frac{n}{2}\right\rfloor$ integers. The k-th one should indicate the sought result if the club wants to create k pairs of chess players.

Example

standard input			standard output			
6					10	
100	13	20	14	10		

Note

For $k=1$, we need to pair chess players with numbers 2 and 4 .
For $k=2$, we can, for example, create the following pairs: $(4,5)$ and $(1,6)$.
For $k=3$, we need to create the following pairs: $(1,6),(2,5)$, and $(3,4)$.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ rating in chess is a number describing the skills of a player. The higher this number, the better the player is at chess.

