Spectacle

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

The chess club is organizing a chess spectacle. The club has n chess players numbered from 1 to n, where the *i*-th one has a $rating^1 r_i$. In the spectacle, 2k chess players will participate, who will be paired in kpairs, and in these pairs, they will simultaneously play k games. For the spectacle to be thrilling, the club wants the largest rating difference between the chess players in a pair to be as small as possible.

Your task is for every k from 1 to $\lfloor \frac{n}{2} \rfloor$ to calculate the smallest possible maximum rating difference of the chess players in a pair, if the club optimally chooses 2k chess players and pairs them.

Input

In the first line of the standard input, there is one integer $n \ (2 \le n \le 200\ 000)$, indicating the number of chess players.

In the second line, there are n integers, where the *i*-th one is r_i $(1 \le r_i \le 10^{18})$, indicating the rating of the *i*-th player.

Output

In the only output line, there should be $\lfloor \frac{n}{2} \rfloor$ integers. The k-th one should indicate the sought result if the club wants to create k pairs of chess players.

Example

standard input	standard output
6	1 5 6
100 13 20 14 10 105	

Note

For k = 1, we need to pair chess players with numbers 2 and 4.

For k = 2, we can, for example, create the following pairs: (4, 5) and (1, 6).

For k = 3, we need to create the following pairs: (1, 6), (2, 5), and (3, 4).

 $^{^{1}}$ A rating in chess is a number describing the skills of a player. The higher this number, the better the player is at chess.