Exactly Three Neighbors

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Consider a field of squares, infinite in all directions. Each square is painted either black or white. Each black square shares a side with exactly three black neighbors.
We will consider periodic colorings. More precisely, let us first color a rectangle of cells. Then divide the field into such rectangles, joining them by sides. The coloring will be the same in every rectangle.
Provide an example of a coloring where the total share of black squares is equal to the given rational number p / q, or determine that it is impossible.

Input

The first line contains two integers p and q : the numerator and denominator of the desired total share of black squares ($0 \leq p \leq q \leq 10$; numbers p and q are relatively prime).

Output

If the desired coloring is possible, on the first line, print two integers h and w : the height and width of the rectangle $(1 \leq h, w \leq 1000)$. Then print the coloring of the rectangle consisting of h lines with w characters in each. Character "." (dot) describes a white square, and character "\#" (hash) describes a black square. The ratio of the number of black squares in the rectangle to the total number of squares in the rectangle should be p / q. If there are several possible colorings, print any one of them.
If the desired coloring is impossible, print " $-1-1$ " on the first line.

Examples

