Forbidden Set

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A set of decimal digits is given. Find the smallest prime number that has the following property: in the decimal representation of this number, none of the digits belong to the given set.
For example, if the set is $\{0,6,3,9\}$, then the prime 71 satisfies the requirement of the problem (except, perhaps, minimality), while the prime number 101 does not (it contains the digit 0 which is in the set).

Input

The first line of the input contains a single integer n : the number of digits in the set $(1 \leq n \leq 10)$. Each of the following n lines contains a single integer $d_{i}\left(0 \leq d_{i} \leq 9\right)$: the next element of the set. It is guaranteed that all d_{i} are pairwise distinct.

Output

If there are no primes without any digits from the given set in their decimal representation, output -1 . Otherwise, output the smallest such prime.

Examples

	standard input
7	3
0	
1	
2	standard output
4	
6	
8	
9	
9	-1
0	
1	
2	
3	
5	
6	
7	
8	
9	

