Forbidden Set

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A set of decimal digits is given. Find the smallest prime number that has the following property: in the decimal representation of this number, **none** of the digits belong to the given set.

For example, if the set is $\{0, 6, 3, 9\}$, then the prime 71 satisfies the requirement of the problem (except, perhaps, minimality), while the prime number 101 does not (it contains the digit 0 which is in the set).

Input

The first line of the input contains a single integer n: the number of digits in the set $(1 \le n \le 10)$. Each of the following n lines contains a single integer d_i $(0 \le d_i \le 9)$: the next element of the set. It is guaranteed that all d_i are pairwise distinct.

Output

If there are no primes without any digits from the given set in their decimal representation, output -1. Otherwise, output the smallest such prime.

Examples

standard input	standard output
7	3
0	
1	
2	
4	
6	
8	
9	
9	-1
0	
1	
2	
3	
5	
6	
7	
8	
9	