## Integer Half-Sum

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 512 mebibytes |

Consider a board with integers written on it. Initially, each integer from $\ell$ to $r$, inclusive, is written on the board exactly once. In one step, we can choose two numbers $a$ and $b$ on the board such that their half-sum $\frac{a+b}{2}$ is an integer, erase the two chosen numbers and write their half-sum on the board instead.
After zero or more steps, can we obtain a board with a single number on it? If yes, what is the maximum possible number that can be the single number left on the board?

## Input

The first line contains two integers $\ell$ and $r$ : the minimum and maximum numbers that are on the board initially $(1 \leq \ell \leq r \leq 100)$.

## Output

Print the maximum possible number that can be obtained as a single number on the board. If obtaining a single number on the board is impossible, print -1 .

## Example

| standard input | standard output | explanation |
| :--- | :--- | :---: |
| 24 | 3 | $\underline{2}, 3, \underline{4} \rightarrow \underline{3} \rightarrow 3$ |

