Randias Permutation Task

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

For two permutations A and B of length n, Randias can generate a permutation C of length n as $C = A \circ B$ in this way: for each $1 \le i \le n$, C[i] = A[B[i]].

Now he is given *m* permutations A_1, A_2, \ldots, A_m , each of them is of length *n*. He wants to choose a non-empty set of indices i_1, i_2, \ldots, i_k $(1 \le k \le m, 1 \le i_1 < i_2 \cdots < i_k \le m)$, and calculate $C = (((A_{i_1} \circ A_{i_2}) \circ A_{i_3}) \circ A_{i_4}) \cdots \circ A_{i_k}$. Randias wants to know, how many possible permutations *C* he can generate? Output the answer modulo $10^9 + 7$.

A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array), and [1,3,4] is also not a permutation (n = 3 but there is 4 in the array)

Input

The first line contains two positive integers n, m $(1 \le n \cdot m \le 180)$, denoting the length of the permutation and the number of permutations.

The following m lines, each line contains n distinct integers, denoting one permutation.

Output

One single integer, denoting the number of possible permutations C Randias can generate, modulo $10^9 + 7$.

Examples

standard input	standard output
54	8
1 2 3 4 5	
5 1 3 4 2	
3 4 1 5 2	
5 2 4 1 3	
2 1	1
2 1	