Randias Permutation Task

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

For two permutations A and B of length n, Randias can generate a permutation C of length n as $C=A \circ B$ in this way: for each $1 \leq i \leq n, C[i]=A[B[i]]$.
Now he is given m permutations $A_{1}, A_{2}, \ldots, A_{m}$, each of them is of length n. He wants to choose a non-empty set of indices $i_{1}, i_{2}, \ldots, i_{k}\left(1 \leq k \leq m, 1 \leq i_{1}<i_{2} \cdots<i_{k} \leq m\right)$, and calculate $C=\left(\left(\left(A_{i_{1}} \circ A_{i_{2}}\right) \circ A_{i_{3}}\right) \circ A_{i_{4}}\right) \cdots \circ A_{i_{k}}$. Randias wants to know, how many possible permutations C he can generate? Output the answer modulo $10^{9}+7$.
A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation (2 appears twice in the array), and $[1,3,4]$ is also not a permutation ($n=3$ but there is 4 in the array)

Input

The first line contains two positive integers n, $m(1 \leq n \cdot m \leq 180)$, denoting the length of the permutation and the number of permutations.
The following m lines, each line contains n distinct integers, denoting one permutation.

Output

One single integer, denoting the number of possible permutations C Randias can generate, modulo $10^{9}+7$.

Examples

				standard input		standard output	
5	4				8		
1	2	3	4	5			
5	1	3	4	2			
3	4	1	5	2		1	
5	2	4	1	3			
2	1						
2	1						

