Flipping Cards

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	1024 megabytes

n cards are placed in a row, where n is an odd number. Each card has numbers written on both sides. On the i-th card, a_{i} is facing up and b_{i} is facing down.
Grammy wants to maximize the median of all the numbers that are facing up. In order to achieve this, she can do the following operation at most once.

- Choose an interval $[l, r]$ and flip all the cards in the interval. After flipping the cards, b_{i} will be facing up and a_{i} will be facing down for $i \in[l, r]$.

Please help Grammy to calculate the median of all the numbers that are facing up under her optimal strategy.
Recall that the median of a sequence of numbers is the $\frac{n+1}{2}$-th largest number in the sequence.

Input

The first line contains two integers $n\left(1 \leq n<3 \cdot 10^{5}, n \bmod 2=1\right)$, denoting the number of cards.
Each of the next n lines contains 2 integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq 10^{9}\right)$, denoting the initial number that is facing up and the initial number that is facing down for each card.

Output

Output one integer, denoting the median of all the numbers that are facing up under Grammy's optimal strategy.

Examples

	standard input	standard output	
5	6	6	
5	2		
4	7		
6	4	8	2
2	1		
1			

