Problem J. Rikka with String

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 mebibytes

This is the last problem of this contest, so Rikka doesn't want to add a lengthy background to it. Let us make all the things simple and clear.

You have a string s of length n which only contains lowercase English letters from "a" to "1" (there are 12 possible letters). You can choose a permutation of these 12 letters $p_{a}, p_{b}, \ldots, p_{1}$, and then consider the string $t = p_{s_1}p_{s_2}\ldots p_{s_n}$. Your task is to check for each *i* from 1 to *n* whether the *i*-th suffix (the substring t[i, n]) can become the largest suffix of t in lexicographical order after such modification.

Input

The first line contains a single integer t $(1 \le t \le 10^3)$, the number of test cases.

Each test case is given on a separate line containing a string s $(1 \le |s| \le 10^5$, the string contains only lowercase English letters from "a" to "l").

It is guaranteed that there are at most 15 test cases with $|s| > 10^3$.

Output

For each test case, output a single line with a binary string of length |s|. If the *i*-th suffix can become the largest one, the *i*-th position must contain "1". Otherwise, it must contain "0".

Example

standard input	standard output
3	01100
abaab	1111111111101111111110
abcdefghijkllkjihgfedcba	10101000100000
aabbcccbaabcca	