Problem J. Rikka with String

Input file: standard input
Output file: standard output
Time limit: 6 seconds
Memory limit: 512 mebibytes
This is the last problem of this contest, so Rikka doesn't want to add a lengthy background to it. Let us make all the things simple and clear.

You have a string s of length n which only contains lowercase English letters from "a" to " 1 " (there are 12 possible letters). You can choose a permutation of these 12 letters $p_{\mathrm{a}}, p_{\mathrm{b}}, \ldots, p_{1}$, and then consider the string $t=p_{s_{1}} p_{s_{2}} \ldots p_{s_{n}}$. Your task is to check for each i from 1 to n whether the i-th suffix (the substring $t[i, n]$) can become the largest suffix of t in lexicographical order after such modification.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{3}\right)$, the number of test cases.
Each test case is given on a separate line containing a string $s\left(1 \leq|s| \leq 10^{5}\right.$, the string contains only lowercase English letters from "a" to "l").
It is guaranteed that there are at most 15 test cases with $|s|>10^{3}$.

Output

For each test case, output a single line with a binary string of length $|s|$. If the i-th suffix can become the largest one, the i-th position must contain " 1 ". Otherwise, it must contain " 0 ".

Example

standard input	standard output
3	01100
abaab	111111111111011111111110
abcdefghijkllkjihgfedcba	10101000100000
aabbcccbaabcca	

