Permutation Compression ||

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes

For an element in an array, if it is non-zero and it is strictly greater than all of the elements before it,
then it is considered as a beautiful element. We define the beauty of an array as the number of beautiful
elements in the array.

There is a permutation of length n. You want to maximize its beauty by changing some of the beautiful
elements into zero. Note that some elements may become beautiful after your operation, and it will become
available as a target of your operation.

Since modifying the array is tiring, you decide to maximize the beauty of the array by using the minimum
number of operations possible.

If there are multiple solutions, output any.

Input

There are multiple test cases.

The first line contains an integer ¢ (1 < ¢ < 105), denoting the number of test cases. For each test case:
The first line contains an integer n (1 < n < 10%), denoting the size of the permutation.

The next line contains n integers p; (1 < p; < n), denoting the elements in the permutation. It is
guaranteed that all p; in one test case are distinct.

It is guaranteed that > n < 10°.

Output

For each test case:

The first line contains two integers b, ¢, denoting the maximum beauty of the modified array and the
minimum number of operations.

The second line contains ¢ integers o;, denoting the operation sequence. Operation o; means to change
the o0;-th element into zero. You should make sure that the o;-th element is beautiful before your i-th
operation.

If there are multiple solutions, output any.

Example
standard input standard output
2 21
3 1
312 30
3
123

Page 1 of 1

