Karshilov's Matching Problem II

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Karshilov, as always, likes the string matching problem. This time, he gives a string S of length n and assigns a value to each prefix of S. Specifically, the prefix of S with a length of $i(1 \leq i \leq n)$ is pre $_{i}$ and its value is w_{i}.
For any string t, He defines a value function $f(t)=\sum_{i=1}^{n} w_{i} \cdot \operatorname{occur}\left(t, \operatorname{pre}_{i}\right)$ based on the prefixes of given S, where $\operatorname{occur}\left(t\right.$, pre $\left._{i}\right)$ indicates the number of times pre $_{i}$ occurs in the string t. For example: $\operatorname{occur}($ heheh, heh $)=2$ and $\operatorname{occur}(\mathrm{hhh}, \mathrm{h})=3$.

Now, Karshilov has another string T of length n. He will give you m queries. And each query will contains two integers l, r, indicating to query the value of $f(T[l, r])$, where $T[l, r]$ represents a substring from the l-th character to the r-th character of the string T (that is, $T_{l} T_{l+1} \cdots T_{r}$).
Can you solve Karshilov's queries like you did two years ago?

Input

The first line contains two integers, $n, m(1 \leq n, m \leq 150,000)$, indicating the length of string S (string T) and the number of queries.
The second line contains a string S of length n.
The third line contains a string T with a length of n.
The fourth line contains n integers, $w_{1}, w_{2}, \cdots w_{n}$, where $w_{i}\left(0 \leq w_{i} \leq 10^{8}\right)$ is the value of $p r e_{i}$.
For the next m lines, each line contains two integers $l, r(1 \leq l \leq r \leq n)$, which means asking the value of $f(T[l, r])$.
String S and T are both composed of lowercase letters.

Output

The output contains m lines. The i-th line contains an integer, indicating the answer of the i-th query.

Examples

standard input	standard output
```8 5 abbabaab aababbab 1 2 4 8 16 3264 128 1 1 2 3 35 4 18```	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 16 \\ & 38 \end{aligned}$
```154 heheheheehhejie heheheheheheheh 3 1441559265 3 5 8 9 7 9 2 3 4 26 115```	$\begin{aligned} & \hline 3 \\ & 13 \\ & 13 \\ & 174 \end{aligned}$

