Painter

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	256 megabytes

Little G is a painter and is painting on a 2 D plane. Each integral point has a color character and the initial color characters for all integral points are "." $(\mathrm{ASCII}=46)$. Now Little G is planning to do some operations one by one, where each operation is in one of the following three types:

1. "Circle x y r col", which means to draw a circle. Formally, change the color characters to col for these points (u, v) that $(u-x)^{2}+(v-y)^{2} \leq r^{2}$.
2. "Rectangle $x_{1} y_{1} x_{2} y_{2}$ col", which means to draw a rectangle. Formally, change the color characters to col for these points (u, v) that $x_{1} \leq u \leq x_{2}, y_{1} \leq v \leq y_{2}$.
3. "Render $x_{1} y_{1} x_{2} y_{2}$ ", which means to render the image of given region. Formally, print the color characters for these points (u, v) that $x_{1} \leq u \leq x_{2}, y_{1} \leq v \leq y_{2}$.

But now, Little G is busy replying clarifications, so could you help him and be the painter?

Input

The first line contains one integers $n(1 \leq n \leq 2000)$, denoting the number of operations.
Following n lines each contains one operation, which is in one of the following three types:

1. "Circle x y $\operatorname{rcol}\left(0 \leq|x|,|y|, r \leq 10^{9}\right)$ ", which means to draw a circle. Formally, change the color characters to col for these points (u, v) that $(u-x)^{2}+(v-y)^{2} \leq r^{2}$.
2. "Rectangle $x_{1} y_{1} x_{2} y_{2} \operatorname{col}\left(-10^{9} \leq x_{1} \leq x_{2} \leq 10^{9},-10^{9} \leq y_{1} \leq y_{2} \leq 10^{9}\right)$ ", which means to draw a rectangle. Formally, change the color characters to col for these points (u, v) that $x_{1} \leq u \leq x_{2}, y_{1} \leq v \leq y_{2}$.
3. "Render $x_{1} y_{1} x_{2} y_{2}\left(-10^{9} \leq x_{1} \leq x_{2} \leq 10^{9},-10^{9} \leq y_{1} \leq y_{2} \leq 10^{9}\right)$ ", which means to render the image of given region. Formally, print the color characters for these points (u, v) that $x_{1} \leq u \leq x_{2}, y_{1} \leq v \leq y_{2}$.

It is guaranteed that all of the $x, y, r, x_{1}, y_{1}, x_{2}, y_{2}$ above are integers.
It is guaranteed that the sum of the rendering region areas(which equal $\left.\left(x_{2}-x_{1}+1\right) \times\left(y_{2}-y_{1}+1\right)\right)$ doesn't exceed 10^{4}, and that col denotes visible characters, whose ASCII codes are between 33 and 126.

Output

For each rendering operation "Render $x_{1} y_{1} x_{2} y_{2}$ ", print $y_{2}-y_{1}+1$ lines each containing one string of length $x_{2}-x_{1}+1$, denoting the region image(from row y_{2} to row y_{1}).

Example

standard input	standard output
```7 Circle O O 5 * Circle -2 2 1 @ Circle 2 2 1 @ Rectangle 0 -1 0 0 - Rectangle -2 -2 2 -2 _ Render -5 -5 5 5 Render -1 0 1 2```	......*.....   . . $* * * * * * * .$.      .*@@@*@@@*.   . $* *$ Q $* * *$ Q $*$.   $* * * * * へ * * * * *$   . $* * * *{ }^{*} * * * *$.   . ** $\qquad$ **   . $* * * * * * * * *$.   . . $* * * * * * *$.   .....**....   @*@   ***   *~*

