Painter

Input file: standard input
Output file: standard output

Time limit: 1.5 seconds Memory limit: 256 megabytes

Little G is a painter and is painting on a 2D plane. Each integral point has a color character and the initial color characters for all integral points are "." (ASCII = 46). Now Little G is planning to do some operations one by one, where each operation is in one of the following three types:

- 1. "Circle x y r col", which means to draw a circle. Formally, change the color characters to col for these points (u, v) that $(u x)^2 + (v y)^2 \le r^2$.
- 2. "Rectangle $x_1 y_1 x_2 y_2 col$ ", which means to draw a rectangle. Formally, change the color characters to col for these points (u, v) that $x_1 \le u \le x_2, y_1 \le v \le y_2$.
- 3. "Render $x_1 y_1 x_2 y_2$ ", which means to render the image of given region. Formally, print the color characters for these points (u, v) that $x_1 \le u \le x_2, y_1 \le v \le y_2$.

But now, Little G is busy replying clarifications, so could you help him and be the painter?

Input

The first line contains one integers n ($1 \le n \le 2000$), denoting the number of operations. Following n lines each contains one operation, which is in one of the following three types:

- 1. "Circle xyrcol $(0 \le |x|, |y|, r \le 10^9)$ ", which means to draw a circle. Formally, change the color characters to col for these points (u, v) that $(u x)^2 + (v y)^2 \le r^2$.
- 2. "Rectangle $x_1 y_1 x_2 y_2 col(-10^9 \le x_1 \le x_2 \le 10^9, -10^9 \le y_1 \le y_2 \le 10^9)$ ", which means to draw a rectangle. Formally, change the color characters to col for these points (u, v) that $x_1 \le u \le x_2, y_1 \le v \le y_2$.
- 3. "Render $x_1 y_1 x_2 y_2$ ($-10^9 \le x_1 \le x_2 \le 10^9$, $-10^9 \le y_1 \le y_2 \le 10^9$)", which means to render the image of given region. Formally, print the color characters for these points (u, v) that $x_1 \le u \le x_2, y_1 \le v \le y_2$.

It is guaranteed that all of the $x, y, r, x_1, y_1, x_2, y_2$ above are integers.

It is guaranteed that the sum of the rendering region areas(which equal $(x_2 - x_1 + 1) \times (y_2 - y_1 + 1)$) doesn't exceed 10^4 , and that *col* denotes visible characters, whose ASCII codes are between 33 and 126.

Output

For each rendering operation "Render $x_1 y_1 x_2 y_2$ ", print $y_2 - y_1 + 1$ lines each containing one string of length $x_2 - x_1 + 1$, denoting the region image(from row y_2 to row y_1).

Example

standard input	standard output
7	*
Circle 0 0 5 *	*****
Circle -2 2 1 @	.**0***0**.
Circle 2 2 1 @	.*000*000*.
Rectangle 0 -1 0 0 ^	.**0***0**.
Rectangle -2 -2 2 -2 _	*****
Render -5 -5 5 5	.****^***.
Render -1 0 1 2	.****.
	.******

	*
	0*0

	* @*@ ***