Line Graph Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

In the mathematical discipline of graph theory, the line graph of a simple undirected graph G is another simple undirected graph $L(G)$ that represents the adjacency between every two edges in G.
Precisely speaking, for an undirected graph G without self-loops or multiple edges, its line graph $L(G)$ is a graph such that

- each vertex of $L(G)$ represents an edge of G; and
- two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common endpoint in G.

Figure: Generation of the Line Graph

Given a simple undirected graph G, you need to find the minimum number of vertices among all the graphs in sequence $L^{0}(G), L^{1}(G), \ldots, L^{k-1}(G)$, where $L^{0}(G)=G$ and $L^{t}(G)=L\left(L^{t-1}(G)\right)$ for each positive integer t.

Input

The input contains several test cases, and the first line contains a single integer $T\left(1 \leq T \leq 10^{5}\right)$, denoting the number of test cases.
For each test case:
The first line contains three integers $n\left(1 \leq n \leq 10^{5}\right)$, $m\left(0 \leq m \leq \min \left(\frac{n(n-1)}{2}, 10^{5}\right)\right)$, and k $\left(1 \leq k \leq 10^{5}\right)$, denoting the number of vertices and edges in graph G and the length of the line graph sequence.
Then m lines follow, each of which contains two integers u and $v(1 \leq u, v \leq n)$, denoting an undirected edge connecting the u-th and the v-th vertices in graph G. It is guaranteed that graph G contains no self-loops or multiple edges.
It is guaranteed that the total number of vertices and edges in all test cases do not exceed 10^{5} respectively.

Output

For each test case, output a line containing a single integer, indicating the minimum number of vertices among all the graphs in the sequence $L^{0}(G), L^{1}(G), \ldots, L^{k-1}(G)$.

Example

	standard input		standard output
4		5	
5	5	3	4
1	2	3	
1	3	0	
1	4		
2	5		
4	5		
5	4	3	
1	2		
1	3		
1	4		
1	5		
5	4	3	
1	2		
2	3		
3	4		
4	5		
5	0	3	

