Line Graph Sequence

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

In the mathematical discipline of graph theory, the line graph of a simple undirected graph G is another simple undirected graph L(G) that represents the adjacency between every two edges in G.

Precisely speaking, for an undirected graph G without self-loops or multiple edges, its line graph L(G) is a graph such that

- each vertex of L(G) represents an edge of G; and
- two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G.

Figure: Generation of the Line Graph

Given a simple undirected graph G, you need to find the minimum number of vertices among all the graphs in sequence $L^0(G), L^1(G), \ldots, L^{k-1}(G)$, where $L^0(G) = G$ and $L^t(G) = L(L^{t-1}(G))$ for each positive integer t.

Input

The input contains several test cases, and the first line contains a single integer T ($1 \le T \le 10^5$), denoting the number of test cases.

For each test case:

The first line contains three integers $n \ (1 \le n \le 10^5)$, $m \ (0 \le m \le \min\left(\frac{n(n-1)}{2}, 10^5\right))$, and $k \ (1 \le k \le 10^5)$, denoting the number of vertices and edges in graph G and the length of the line graph sequence.

Then *m* lines follow, each of which contains two integers *u* and *v* $(1 \le u, v \le n)$, denoting an undirected edge connecting the *u*-th and the *v*-th vertices in graph *G*. It is guaranteed that graph *G* contains no self-loops or multiple edges.

It is guaranteed that the total number of vertices and edges in all test cases do not exceed 10^5 respectively.

Output

For each test case, output a line containing a single integer, indicating the minimum number of vertices among all the graphs in the sequence $L^0(G), L^1(G), \ldots, L^{k-1}(G)$.

Example

standard input	standard output
4	5
553	4
1 2	3
1 3	0
1 4	
2 5	
4 5	
543	
1 2	
1 3	
1 4	
1 5	
543	
1 2	
2 3	
3 4	
4 5	
503	