## Based Zeros

Input file:
standard input
Output file: standard output
Time limit:
2 seconds
Memory limit:

Barbara has always known how to represent integers in the decimal numeral system (base ten), using digits $0,1,2, \ldots, 9$. Recently she has learned that for any integer base $b \geq 2$, she can also represent integers in base $b$, using symbols with values from 0 to $b-1$, inclusive, as digits.

Barbara's favorite digit is 0. Luckily, it looks the same in all bases.
Today Barbara is playing with a positive integer $n$. Now she wonders: in what bases does the representation of $n$ contain the biggest number of zeros? Help her to find all such bases.

## Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 1000)$. The description of the test cases follows.
The only line of each test case contains a single integer $n\left(2 \leq n \leq 10^{18}\right)$.

## Output

For each test case, in the first line, print two integers $k$ and $m$, denoting the maximum number of zeros the representation of $n$ can have in any integer base, and the number of such bases, respectively.

In the second line, print $m$ integers $b_{1}, b_{2}, \ldots, b_{m}$, denoting all such bases in increasing order $\left(2 \leq b_{1}<b_{2}<\cdots<b_{m} \leq n\right)$.

## Example

| standard input | standard output |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 3 |  |  |  |
| 1007 | 2 | 3 | 11 |  |  |
| 239 | 2 | 2 |  |  |  |
|  | 3 | 10 |  |  |  |
|  | 1 | 4 |  |  |  |
|  | 2 | 6 | 15 | 239 |  |

## Note

Here are the representations with the maximum number of zeros for the example test cases:

- $11=1011_{2}=102_{3}=10_{11}$ (one zero);
- $1007=1101022_{3}=1007_{10}$ (two zeros);
- $239=11101111_{2}=1035_{6}=10 \mathrm{E}_{15}=10_{239}$ (one zero).

In the $239=10 \mathrm{E}_{15}$ representation, E stands for a digit with the value of 14 .

