Problem B. Remove the Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You are given an unweighted tree with n vertices, numbered by integers from 1 to n. Let us define the *remove* operation as follows:

- 1. choose an arbitrary path in the current graph (a path with only one vertex is valid),
- 2. remove all vertices along this path, and all edges incident to them.

Calculate the minimum number of such operations to remove all **edges**. Note that it is allowed to leave some vertices not removed.

Input

The first line contains one integer $n \ (2 \le n \le 2 \cdot 10^5)$, the number of vertices in the tree.

The *i*-th of the next n-1 lines contains integers a_i and b_i $(1 \le a_i, b_i \le n, a_i \ne b_i)$, the numbers of vertices connected by edge *i*.

It is guaranteed that the given graph is a tree.

Output

Output one integer: the minimum number of remove operations.

Examples

standard input	standard output
4	1
1 2	
1 3	
1 4	
6	1
3 4	
2 3	
5 3	
1 3	
3 6	
11	2
1 2	
2 3	
3 4	
4 5	
56	
6 11	
59	
9 10	
3 7	
78	

Note

The third example corresponds to the following image:

