Problem M
 Mini-Tetris 3023

A guy named Gry found a new game called "Mini-Tetris 3023". This small version of Tetris is played on a very long grid only 2 cells high and has just three types of tile:

- A square made out of 4 tiles in a 2×2 grid.
- An S-tile made out of 4 tiles, 2 on one row and 2 slightly offset on the other
- A corner made out of 3 tiles, 1 on one row and 2 on the other

Tiles may be rotated $0,90,180$, or 270 degrees to fit amongst each other, however, they cannot overlap or go outside the vertical boundary of the grid.

Square

S-tile

Corner

This game provides a squares, b S-tiles, and c corners. Gry would like to beat the high score by creating the largest-possible contiguous $2 \times n$ rectangle out of some or all of the provided tiles, without any tiles overlapping or sticking out of the rectangle.

Input

- The sole line of input contains three integers a, b, and $c(0 \leq a, b, c \leq 50)$ - the number of squares, S-tiles, and corners, respectively.

Output

Output the maximum possible width of the grid, n, that can be perfectly filled by some or all of the given tiles without overlapping or overstepping the boundaries.

Sample Input 1
 Sample Output 1

2	2	11

Sample Input 2
Sample Output 2
111 2

Sample Input 3
Sample Output 3
000

This page is intentionally left (almost) blank.

