Teleportation

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Bobo recently visited a strange teleportation system. The system contains n rooms, numbered 0 through $n-1$. A teleporting device is installed in each room. Each teleporting device contains a dashboard that looks like a clock surface with a hand on it, showing numbers 0 through $n-1$ in clockwise order. Initially, the hand on the dashboard of the teleport device in the i-th $(0 \leq i \leq n-1)$ room points to the number a_{i}.
When Bobo is in room $i(0 \leq i \leq n-1)$, he may do the following operation any number of times:

- Teleport. Immediately teleport to the room $\left(i+a_{i}\right) \bmod n$.
- Move the hand clockwise. Set $a_{i} \leftarrow a_{i}+1$.

Each operation takes one unit of time. Bobo starts at room 0 , and he wants to reach some room x as quickly as possible. He wonders how long it is needed.

Input

The first line of input contains two integers $n\left(2 \leq n \leq 10^{5}\right)$ and $x(1 \leq x \leq n-1)$, denoting the number of rooms and Bobo's destination room, respectively.
The next line contains n integers $a_{0}, a_{1}, \ldots, a_{n-1}\left(0 \leq a_{i} \leq n-1\right)$, where $a_{i}(0 \leq i \leq n-1)$ denotes the number the hand in the i-th room points to.

Output

Output an integer in a line, denoting the minimum time Bobo needs to reach room x from room 0 .

Examples

	standard input			standard output
4	3		4	
0	1	2	3	4
4	3		4	
0	0	0	0	2
4	3			
2	2	2	2	

Note

Here, we provide graphical illustrations of one possible optimal way in the first sample. Initially, Bobo is at room 0 , and the hand on each dashboard is at $0,1,2,3$, respectively.

The first operation Bobo does is to move the hand clockwise so that the hand on the dashboard in room 0 points to 1 . $\left(a_{0}=1\right)$

Then Bobo teleports to room $\left(0+a_{0}\right) \bmod n=1$.

After that, Bobo moves the hand clockwise so that the hand on the dashboard in room 1 points to 2 . $\left(a_{1}=2\right)$.

Then Bobo teleports to room $\left(1+a_{1}\right) \bmod n=3$, reaching his desired destination. It takes an overall of 4 operations.

