Cyclic Substrings

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

Mr. Ham is interested in strings, especially palindromic strings. Today, he finds a string s of length n.
For the string s of length n, he defines its cyclic substring from the i-th character to the j-th character $(1 \leq i, j \leq n)$ as follows:

- If $i \leq j$, the cyclic substring is the substring of s from the i-th character to the j-th character. He denotes it as $s[i . . j]$.
- If $i>j$, the cyclic substring is $s[i . . n]+s[1 . . j]$, where + denotes the concatenation of two strings. He also denotes it as $s[i . . j]$.

For example, if $s=12345$, then $s[2 . .4]=234, s[4 . .2]=4512$, and $s[3 . .3]=3$.
A string t is palindromic if $t[i]=t[n-i+1]$ for all i from 1 to n. For example, 1221 is palindromic, while 123 is not.

Given the string s, there will be many cyclic substrings of s which are palindromic. Denote P as the set of all distinct cyclic substrings of s which are palindromic, $f(t)(t \in P)$ as the number of times t appears in s as a cyclic substring, and $g(t)(t \in P)$ as the length of t. Mr. Ham wants you to compute

$$
\sum_{t \in P} f(t)^{2} \times g(t)
$$

The answer may be very large, so you only need to output the answer modulo 998244353 .

Input

The first line contains a number $n\left(1 \leq n \leq 3 \times 10^{6}\right)$, the length of the string s.
The second line contains a string s of length n. Each character of s is a digit.

Output

Output a single integer, denoting the sum modulo 998244353.

Examples

standard input	standard output
5 01010	39
8	192

Note

In the sample, the palindromic cyclic substrings of s are:

- $s[1 . .1]=s[3 . .3]=s[5 . .5]=0$.
- $s[2 . .2]=s[4 . .4]=1$.
- $s[5 . .1]=00$.
- $s[1 . .3]=s[3 . .5]=010$.
- $s[2 . .4]=101$.
- $s[4 . .2]=1001$.
- $s[1 . .5]=01010$.

The answer is $3^{2} \times 1+2^{2} \times 1+1^{2} \times 2+2^{2} \times 3+1^{2} \times 3+1^{2} \times 4+1^{2} \times 5=39$.

