Balanced Array

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

Mr. Ham likes balance. He applies the concept of balance to integer arrays.
A balanced array is defined as an integer array $a_{1}, a_{2}, \ldots a_{l}$ that satisfies the following condition:

- There exists an integer k, such that $1 \leq k \leq \frac{l-1}{2}$.
- $a_{i}+a_{i+2 k}=2 a_{i+k}$ for each i in $1,2, \ldots l-2 k$.

Given an array $a_{1}, a_{2}, \ldots a_{n}$, Mr. Ham wants to determine whether $a_{1 \ldots i}$ is a balanced array for each i in $1,2, \ldots n$.
Please help Mr. Ham to solve the task.

Input

The first line contains an integer $n\left(1 \leq n \leq 2 \times 10^{6}\right)$, denoting the length of the array A.
The second line contains n integers $a_{1}, a_{2} \ldots a_{n}\left(1 \leq a_{i} \leq 2 \times 10^{8}\right)$.
To minimize the size of the input file, a_{i} was encoded in base-62, where the characters $0 \ldots 9 a \ldots z A \ldots \mathrm{Z}$ correspond to the numerical values $0 \ldots 61$ for each digit. For example, AaO represents $36 \times 62^{2}+10 \times 62+0=139004$.

Output

Output a binary string $s_{1 \ldots n}$, such that $s_{i}=1$ if $a_{1 \ldots i}$ is balanced, $s_{i}=0$ otherwise.

Examples

standard input	standard output
$\begin{array}{lll} 3 & & \\ 1 & 2 & 3 \end{array}$	001
$\begin{array}{lllllllll} 9 & & & & & & \\ 1 & 2 & 3 & 2 & 5 & 4 & 3 & 8 & 5 \end{array}$	001010111
$\begin{aligned} & 9 \\ & 1 \mathrm{C} \text { 3f } 4 \mathrm{~S} 3 \mathrm{~h} 886 \mathrm{x} 4 \mathrm{~W} \text { d1 8c } \end{aligned}$	001010111

