Streak Manipulation

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

This semester, Mr. Ham spent a lot of time in training for ICPC. He has n classes this semester, and he only attended some of them. He uses a binary string $s_{1 . . n}$ to represent which classes he attended. If the i-th character of the string is 1 , he attended the i-th class. Otherwise, he didn't attend the i-th class.
If Mr. Ham attended k consecutive classes, he would get a streak of length k. Formally, if $1 \leq i \leq j \leq n$ satisfies the following conditions, we say that Mr. Ham has a streak of length $j-i+1$:

- $s_{i}=s_{i+1}=\cdots=s_{j}=1$;
- $i=1$ or $s_{i-1}=0$;
- $j=n$ or $s_{j+1}=0$.

For example, if $s=101101$, Mr. Ham has one streak of length 2 and two streaks of length 1 .
Mr. Ham found that he was absent from too many classes. So he stole the attendance record and wants to change it (It's not allowed, so please don't do that). Given m and k, he can change at most m records from 0 to 1 . He wants to know the maximum length of the k-th longest streak he can get.

If there are less than k streaks, we define the length of k-th longest streak as -1 .

Input

The first line contains three integers n, m and $k\left(1 \leq m \leq n \leq 2 \times 10^{5}, 1 \leq k \leq \min (n, 5)\right)$.
The second line contains a string s of length n. It is guaranteed that $\forall 1 \leq i \leq n, s_{i} \in\{0,1\}$.

Output

Output the maximum length of the k-th longest streak Mr. Ham can get by changing at most m records from 0 to 1 .

Examples

standard input	
832 10110110	3
1233 100100010011	standard output
444 0000	-1

