Information Spread

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 megabytes

In Mr. Ham's class, there are n students numbered from 1 to n. One day, a student 1 learns a piece of information. Subsequently, the students initiate the process of spreading the information to each other.
The relationships among the students are represented by a directed graph with n vertices and m edges. Each edge has a weight w, a real number between 0 and 1 (inclusive). The process of information spreading is carried out according to the following pseudocode:

```
Algorithm 1 SPREAD
    Let aware \([1 . . n]\) be a new array initialized as False
    Let visited \([1 . . n]\) be a new array initialized as False
    procedure \(\operatorname{DFS}(u)\)
        if visited[u] then
            return
        end if
        visited \([u] \leftarrow\) True
        for \((u, v, w) \in\) edges starting from \(u\) do
            \(\triangleright\) Enumerate edges in the order of input \(\triangleleft\)
            if aware \([u]\) and not aware \([v]\) then
                with probability \(w\), aware \([v] \leftarrow\) True
            end if
            DFS(v)
        end for
    end procedure
    procedure SPREAD
        aware \([1] \leftarrow\) True \(\quad \triangleright\) The first student knows the information at the beginning
        DFS(1)
    end procedure
```

Please compute the probability that student i becomes aware of the information through this process, for all $1 \leq i \leq n$. In other words, calculate the probability of aware[u] being True in the above pseudocode.

Input

The first line contains two integers n and $m\left(3 \leq n \leq 10^{5}, n-1 \leq m \leq 3 \cdot 10^{5}\right)$, denoting the number of students and the number of relationships.
The next m lines each contains four integers u_{i}, v_{i}, p_{i} and $q_{i}\left(1 \leq a_{i}, b_{i} \leq n, 0 \leq p_{i} \leq q_{i} \leq 10^{5}, q_{i} \neq 0\right)$, denoting a relationship from student u_{i} to student v_{i} with a weight $w_{i}=\frac{p_{i}}{q_{i}}$.
It is guaranteed that there is no relationship from student i to student $i(1 \leq i \leq n)$, and there is at most one relationship from student i to student $j(1 \leq i, j \leq n)$. It is also guaranteed that all students can be reached from student 1 in the process.

Output

Output n lines, the i-th line contains a single integer x_{i} denoting the probability that student i becomes aware of the information after the process modulo 998244353 .
Formally, it can be proven that the answer is a rational number $\frac{p}{q}$. To avoid issues related to precisions, please output the integer $\left(p q^{-1} \bmod M\right)$ as the answer, where $M=998244353$ and q^{-1} is the integer satisfying $q q^{-1} \equiv 1(\bmod M)$.

Examples

			standard input	standard output	
4	4			1	499122177
1	2	1	2		623902721
2	3	1	2		748683265
2	4	1	2		1
4	3	1	1		947252499
6	12		124986918		
1	2	81804	95651	535320090	
2	3	39701	95895	929273289	
2	4	6178	17992	551177734	
3	5	72756	84510		
5	6	40007	83640		
2	6	60491	92219		
5	3	37590	47735		
4	5	6867	20289		
4	3	75051	93231		
6	5	48102	54448		
6	1	40190	45274		
1	5	37010	60312		

Note

For the first example, the process unfolds as follows:

- Student 1 knows the information initially.
- We choose the edge $\left(1,2, \frac{1}{2}\right)$. As a result, student 2 becomes aware of the information with a probability of $\frac{1}{2}$.
- We choose the edge $\left(2,3, \frac{1}{2}\right)$.
- We choose the edge $\left(2,4, \frac{1}{2}\right)$. Consequently, student 4 becomes aware of the information with a probability of $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
- We choose the edge $(4,3,1)$.

Now, let's analyze the scenario where student 3 remains unaware of the information. This can happen in two cases:

- Student 2 did not become aware when we selected the edge $\left(1,2, \frac{1}{2}\right)$.
- Student 2 became aware when we selected the edge $\left(1,2, \frac{1}{2}\right)$, but student 3 did not become aware when we selected the edge $\left(2,3, \frac{1}{2}\right)$, and student 4 did not become aware when we selected the edge (2, $4, \frac{1}{2}$).

Therefore, the probability of student 3 becoming aware is given by: $1-\frac{1}{2}-\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{3}{8}$.

