Information Spread

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 megabytes

In Mr. Ham's class, there are n students numbered from 1 to n. One day, a student 1 learns a piece of information. Subsequently, the students initiate the process of spreading the information to each other.

The relationships among the students are represented by a **directed** graph with n vertices and m edges. Each edge has a weight w, a real number between 0 and 1 (inclusive). The process of information spreading is carried out according to the following pseudocode:

Algorithm 1 SPREAD

1:	Let $aware[1n]$ be a new array initialized as $False$
2:	Let $visited[1n]$ be a new array initialized as $False$
3:	procedure $DFS(u)$
4:	if $visited[u]$ then
5:	return
6:	end if
7:	$visited[u] \leftarrow True$
8:	for $(u, v, w) \in$ edges starting from u do
9:	\triangleright Enumerate edges in the order of input
10:	if $aware[u]$ and not $aware[v]$ then
11:	with probability w , $aware[v] \leftarrow True$
12:	end if
13:	DFS(v)
14:	end for
15:	end procedure
16:	procedure SPREAD
17:	$aware[1] \leftarrow True$ \triangleright The first student knows the information at the beginning
18:	DFS(1)
19:	end procedure

Please compute the probability that student *i* becomes aware of the information through this process, for all $1 \le i \le n$. In other words, calculate the probability of aware[u] being **True** in the above pseudocode.

Input

The first line contains two integers n and m $(3 \le n \le 10^5, n-1 \le m \le 3 \cdot 10^5)$, denoting the number of students and the number of relationships.

The next *m* lines each contains four integers u_i , v_i , p_i and q_i $(1 \le a_i, b_i \le n, 0 \le p_i \le q_i \le 10^5, q_i \ne 0)$, denoting a relationship from student u_i to student v_i with a weight $w_i = \frac{p_i}{q_i}$.

It is guaranteed that there is no relationship from student i to student i $(1 \le i \le n)$, and there is at most one relationship from student i to student j $(1 \le i, j \le n)$. It is also guaranteed that all students can be reached from student 1 in the process.

Output

Output n lines, the *i*-th line contains a single integer x_i denoting the probability that student *i* becomes aware of the information after the process modulo 998 244 353.

Formally, it can be proven that the answer is a rational number $\frac{p}{q}$. To avoid issues related to precisions, please output the integer $(pq^{-1} \mod M)$ as the answer, where $M = 998\,244\,353$ and q^{-1} is the integer satisfying $qq^{-1} \equiv 1 \pmod{M}$.

Examples

standard input	standard output
4 4	1
1 2 1 2	499122177
2 3 1 2	623902721
2 4 1 2	748683265
4 3 1 1	
6 12	1
1 2 81804 95651	947252499
2 3 39701 95895	124986918
2 4 6178 17992	535320090
3 5 72756 84510	929273289
5 6 40007 83640	551177734
2 6 60491 92219	
5 3 37590 47735	
4 5 6867 20289	
4 3 75051 93231	
6 5 48102 54448	
6 1 40190 45274	
1 5 37010 60312	

Note

For the first example, the process unfolds as follows:

- Student 1 knows the information initially.
- We choose the edge $(1, 2, \frac{1}{2})$. As a result, student 2 becomes aware of the information with a probability of $\frac{1}{2}$.
- We choose the edge $(2, 3, \frac{1}{2})$.
- We choose the edge $(2, 4, \frac{1}{2})$. Consequently, student 4 becomes aware of the information with a probability of $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.
- We choose the edge (4, 3, 1).

Now, let's analyze the scenario where student 3 remains unaware of the information. This can happen in two cases:

- Student 2 did not become aware when we selected the edge $(1, 2, \frac{1}{2})$.
- Student 2 became aware when we selected the edge $(1, 2, \frac{1}{2})$, but student 3 did not become aware when we selected the edge $(2, 3, \frac{1}{2})$, and student 4 did not become aware when we selected the edge $(2, 4, \frac{1}{2})$.

Therefore, the probability of student 3 becoming aware is given by: $1 - \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$.