Largest Digit

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Let $f(x)$ be the largest digit in the decimal representation of a positive integer x. For example, $f(4523)=5$ and $f(1001)=1$.
Given four positive integers l_{a}, r_{a}, l_{b} and r_{b} such that $l_{a} \leq r_{a}$ and $l_{b} \leq r_{b}$, calculate the maximum value of $f(a+b)$, where $l_{a} \leq a \leq r_{a}$ and $l_{b} \leq b \leq r_{b}$.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{3}\right)$ indicating the number of test cases. For each test case:

The first and only line contains four integers l_{a}, r_{a}, l_{b} and $r_{b}\left(1 \leq l_{a} \leq r_{a} \leq 10^{9}, 1 \leq l_{b} \leq r_{b} \leq 10^{9}\right)$.

Output

For each test case output one line containing one integer indicating the maximum value of $f(a+b)$.

Example

standard input	standard output
2	7
$\begin{array}{lllll}178 & 1828385\end{array}$	9
2536	

Note

For the first sample test case, the answer is $f(182+85)=f(267)=7$.
For the second sample test case, the answer is $f(4+5)=f(9)=9$.

