Largest Digit

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Let f(x) be the largest digit in the decimal representation of a positive integer x. For example, f(4523) = 5 and f(1001) = 1.

Given four positive integers l_a , r_a , l_b and r_b such that $l_a \leq r_a$ and $l_b \leq r_b$, calculate the maximum value of f(a+b), where $l_a \leq a \leq r_a$ and $l_b \leq b \leq r_b$.

Input

There are multiple test cases. The first line of the input contains an integer T $(1 \le T \le 10^3)$ indicating the number of test cases. For each test case:

The first and only line contains four integers l_a , r_a , l_b and r_b $(1 \le l_a \le r_a \le 10^9, 1 \le l_b \le r_b \le 10^9)$.

Output

For each test case output one line containing one integer indicating the maximum value of f(a + b).

Example

standard input	standard output
2	7
178 182 83 85	9
2536	

Note

For the first sample test case, the answer is f(182 + 85) = f(267) = 7. For the second sample test case, the answer is f(4 + 5) = f(9) = 9.