Strange Sorting

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 1024 megabytes

We present an extremely simple sorting algorithm. It may look like it is obviously wrong, but we prove that it is in fact correct. a

[^0]After learning the strange sorting algorithm in the problem Paimon Sorting of The 2021 ICPC Asia Nanjing Regional Contest, Little Cyan Fish comes up with the following task.
Given a sequence $a_{1}, a_{2}, \cdots, a_{n}$ which is a permutation of n, your task is to sort the permutation in ascending order by applying the following operation for at most $\left\lfloor\frac{n}{2}\right\rfloor$ times: Choose two indices l and r satisfying $1 \leq l<r \leq n$ and $a_{l}>a_{r}$, and then sort $a_{l}, a_{l+1}, \cdots, a_{r}$ in ascending order.
Recall that a permutation of n is a sequence of length n, in which each integer from 1 to n (both inclusive) appears exactly once. Also recall that $\lfloor x\rfloor$ indicates the largest integer less than or equal to x.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leq n \leq 100)$ indicating the length of the permutation.
The second line contains n distinct integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{i} \leq n\right)$ indicating the given permutation. It's guaranteed that the sum of n of all test cases will not exceed 10^{4}.

Output

For each test case, first output one line containing one integer $k\left(0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ indicating the number of operations you're going to use. Then output k lines, where the i-th line contains two integers l_{i} and r_{i} separated by a space, indicating the two indices you choose for the i-th operation.

It can be proven that the answer always exists. If there are multiple valid answers, you can output any of them.

Example

							standard input	2	
3									
6						6			
2	3	4	6	5	1	1	3		
5									
1	2	3	4	5		1			
3							3		
2	3	1							

Note

For the first sample test case, after the 1 -st operation the permutation becomes $\{2,3,1,4,5,6\}$, and after the 2 -nd operation the permutation becomes $\{1,2,3,4,5,6\}$, which is in ascending order.

[^0]: ${ }^{a}$ Stanley P. Y. Fung. Is this the simplest (and most surprising) sorting algorithm ever? arXiv:2110.01111

