## Building Bridges

Time Limit: 3 s Memory Limit: 128 MB

A wide river has $n$ pillars of possibly different heights standing out of the water. They are arranged in a straight line from one bank to the other. We would like to build a bridge that uses the pillars as support. To achieve this we will select a subset of pillars and connect their tops into sections of a bridge. The subset has to include the first and the last pillar.

The cost of building a bridge section between pillars $i$ and $j$ is $\left(h_{i}-h_{j}\right)^{2}$ as we want to avoid uneven sections, where $h_{i}$ is the height of the pillar $i$. Additionally, we will also have to remove all the pillars that are not part of the bridge, because they obstruct the river traffic. The cost of removing the $i$-th pillar is equal to $w_{i}$. This cost can even be negative - some interested parties are willing to pay you to get rid of certain pillars. All the heights $h_{i}$ and costs $w_{i}$ are integers.

What is the minimum possible cost of building the bridge that connects the first and last pillar?

## Input

The first line contains the number of pillars, $n$. The second line contains pillar heights $h_{i}$ in the order, separated by a space. The third line contains $w_{i}$ in the same order, the costs of removing pillars.

## Output

Output the minimum cost for building the bridge. Note that it can be negative.

## Constraints

- $2 \leq n \leq 10^{5}$
- $0 \leq h_{i} \leq 10^{6}$
- $0 \leq\left|w_{i}\right| \leq 10^{6}$


## Subtask 1 ( 30 points)

- $n \leq 1000$


## Subtask 2 (30 points)

- optimal solution includes at most 2 additional pillars (besides the first and last)
- $\left|w_{i}\right| \leq 20$


## Subtask 3 (40 points)

- no additional constraints


## Example

| Input | Output |
| :---: | :---: |
| 6 | 17 |
| 387166 |  |
| $0-19120$ |  |

