Palindromic Partitions

Time Limit: $10 \mathrm{~s} \quad$ Memory Limit: 128 MB

A partition of a string s is a set of one or more non-overlapping non-empty substrings of s (call them $a_{1}, a_{2}, a_{3}, \ldots, a_{d}$), such that s is their concatenation: $s=a_{1}+a_{2}+a_{3}+\ldots+a_{d}$. We call these substrings "chunks" and define the length of such a partition to be the number of chunks, d.

We can represent the partition of a string by writing each chunk in parentheses. For example, the string "decode" can be partitioned as (d) (ec) (ode) or (d) (e) (c) (od) (e) or (decod) (e) or (decode) or (de) (code) or a number of other ways.

A partition is palindromic if its chunks form a palindrome when we consider each chunk as an atomic unit. For example, the only palindromic partitions of "decode" are (de) (co) (de) and (decode). This also illustrates that every word has a trivial palindromic partition of length one.

Your task is to compute the maximal possible number of chunks in palindromic partition.

Input

The input starts with the number of test cases t in the first line. The following t lines describe individual test cases consisting of a single word s, containing only lowercase letters of the English alphabet. There are no spaces in the input.

Output

For every testcase output a single number: the length of the longest palindromic partition of the input word s.

Constraints

Let us denote the length of the input string s with n.

- $1 \leq t \leq 10$
- $1 \leq n \leq 10^{6}$

Subtask 1 (15 points)

- $n \leq 30$

Subtask 2 (20 points)

- $n \leq 300$

Subtask 3 (25 points)

- $n \leq 10000$

Subtask 4 (40 points)

- no additional constraints

Example

Input	Output
4	3
bonobo	5
deleted	7
racecar	1
racecars	

