AND-OR closure

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Given a set A of n non-negative integers, we define its AND-OR closure as the B with smallest size such that:

- $A \subseteq B$
- If $x, y \in B$, then $(x$ AND $y) \in B$
- If $x, y \in B$, then $(x$ OR $y) \in B$

Find the size of the AND-OR closure of A.
Here AND denotes the bitwise AND operation, and OR denotes the bitwise OR operation.

Input

The first line of the input contains a single integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$ - the size of the set A.
The second line contains n distinct integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<2^{40}\right)-$ which represent the elements of A.

Output

Print the size of the AND-OR closure of A.

Examples

		standard input			
4				5	standard output
0	1	3	5		8
5					
0	1	2	3	4	

Note

In the first sample, the AND-OR closure of A is $\{0,1,3,5,7\}$.
In the second sample, the AND-OR closure of A is $\{0,1,2,3,4,5,6,7\}$.

