Fast XORting

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes
You are given an integer n which is a power of two and a permutation aq,a9,...,a, of 0,1,...,n— 1. In

one operation you can do one of the following:

e Swap two adjacent elements. That is, choose any 1 < i <n — 1, and swap a;, a; 11
e Choose any integer 0 < z < n — 1, and replace a; with a; XOR z for every 1 < i < n (notice that

the array remains a permutation)

What is the minimal number of operations needed to sort the permutation?

Here XOR denotes the bitwise XOR operation.

Input

The first line of the input contains a single integer n (1 < n < 2! n is a power of two) — the length of
the permutation.

The second line contains n integers a1, as, ... , a, which form a permutation of 0, 1, ..., n — 1.
Output
Output a single integer — the smallest number of operations needed to sort this permutation.
Examples
standard input standard output

8 2

01325476

8 2

20134567

Note

In the first sample, we can sort the permutation with two operations as follows:

1. Swap ai,ag. The permutation becomes [1,0,3,2,5,4, 7, 6].

2. Choose z = 1, and XOR all elements with 1. It will become [0,1,2,3,4,5,6,7].
In the second sample, we can sort the permutation with two operations as follows:

1. Swap aq, as. The permutation becomes [0,2,1,3,4,5,6,7].

2. Swap ag,as. It will become [0,1,2,3,4,5,6,7].

Page 1 of 1



