
Fast XORting
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

You are given an integer n which is a power of two and a permutation a1, a2, . . . , an of 0, 1, . . . , n− 1. In
one operation you can do one of the following:

• Swap two adjacent elements. That is, choose any 1 ≤ i ≤ n− 1, and swap ai, ai+1

• Choose any integer 0 ≤ x ≤ n − 1, and replace ai with ai XOR x for every 1 ≤ i ≤ n (notice that
the array remains a permutation)

What is the minimal number of operations needed to sort the permutation?

Here XOR denotes the bitwise XOR operation.

Input
The first line of the input contains a single integer n (1 ≤ n ≤ 218, n is a power of two) — the length of
the permutation.

The second line contains n integers a1, a2, . . . , an which form a permutation of 0, 1, . . ., n− 1.

Output
Output a single integer — the smallest number of operations needed to sort this permutation.

Examples
standard input standard output

8
0 1 3 2 5 4 7 6

2

8
2 0 1 3 4 5 6 7

2

Note
In the first sample, we can sort the permutation with two operations as follows:

1. Swap a1, a2. The permutation becomes [1, 0, 3, 2, 5, 4, 7, 6].

2. Choose x = 1, and XOR all elements with 1. It will become [0, 1, 2, 3, 4, 5, 6, 7].

In the second sample, we can sort the permutation with two operations as follows:

1. Swap a1, a2. The permutation becomes [0, 2, 1, 3, 4, 5, 6, 7].

2. Swap a2, a3. It will become [0, 1, 2, 3, 4, 5, 6, 7].

Page 1 of 1


