K Subsequences

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

For an array b, define $f(b)$ as the maximum sum on a subsegment of this array. For example, $f([-1,-1,-1])=0, f([-1,1,1,1,-1])=3$.
You are given an array a of length n, containing only 1 s and -1 s. Partition it into k subsequences $a_{1}, a_{2}, \ldots, a_{k}$ such that $\max _{1 \leq i \leq k} f\left(a_{i}\right)$ is the minimum possible. If there are many solutions, output any.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. The description of test cases follows.

The first line of each test case contains two integers n and $k\left(1 \leq k \leq n \leq 2 \cdot 10^{5}\right)$ - the length of the array and the number of subsequences.

The second line of each test case contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(a_{i}= \pm 1\right)$ - elements of the array.
It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, output n integers $b_{1}, b_{2}, \ldots, b_{n}\left(1 \leq b_{i} \leq k\right)$. Here b_{i} means that element a_{i} belongs to the b_{i}-th subsequence.
Note that subsequences are allowed to be empty: it's allowed for some number $\leq k$ to not appear in b.

Example

standard input	standard output
5	111
32	1122
$\begin{array}{llll}1 & -1\end{array}$	1122333
42	1212121233
$\begin{array}{lllll}-1 & 1 & 1 & -1\end{array}$	123412341234
73	
$\begin{array}{lllllll}1 & 1 & 1 & 1\end{array}$	
103	
$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1\end{array}$	
124	
$\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1\end{array}$	

Note

In the first test case, we can put all elements into a single subsequence $[1,-1,1]$, with max subsegment sum 1 (the max subsegment sum for the remaining, empty subsequence is 0).
In the second test case, we can split elements into two subsequences $[-1,1],[1,-1]$, both with \max subsegment sum 1.
In the third test case, we can split elements into three subsequences $[1,1],[1,1],[1,1,1]$, with max subsegment sums $2,2,3$ correspondingly.
In the fourth test case, we can split elements into three subsequences $[1,1,-1,1],[1,1,-1,1],[1,1]$, all with max subsegment sum 2.
In the fifth test case, we can split elements into four subsequences $[1,-1,1],[1,-1,1],[1,-1,1],[1,-1,1]$,
all with max subsegment sum 1 .

