## Sky Garden

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Prof. Du and Prof. Pang plan to build a sky garden near the city of Allin. In the garden, there will be a plant maze consisting of straight and circular roads.
On the blueprint of the plant maze, Prof. Du draws $n$ circles indicating the circular roads. All of them have center $(0,0)$. The radius of the $i$-th circle is $i$.
Meanwhile, Prof. Pang draws $m$ lines on the blueprint indicating the straight roads. All of the lines pass through $(0,0)$. Each circle is divided into $2 m$ parts with equal lengths by these lines.
Let $Q$ be the set of the $n+m$ roads. Let $P$ be the set of all intersections of two different roads in $Q$. Note that each circular road and each straight road have two intersections.
For two different points $a \in P$ and $b \in P$, we define $\operatorname{dis}(\{a, b\})$ to be the shortest distance one needs to walk from $a$ to $b$ along the roads. Please calculate the sum of $\operatorname{dis}(\{a, b\})$ for all $\{a, b\} \subseteq P$.

## Input

The only line contains two integers $n, m(1 \leq n, m \leq 500)$.

## Output

Output one number - the sum of the distances between every pair of points in $P$.
Your answer is considered correct if its absolute or relative error does not exceed $10^{-6}$.

## Examples

| standard input | standard output |
| :--- | :--- |
| 12 | 14.2831853072 |
| 23 | 175.4159265359 |

Note


$$
\begin{aligned}
\operatorname{dis}\left(p_{1}, p_{2}\right) & =\operatorname{dis}\left(p_{2}, p_{3}\right)=\operatorname{dis}\left(p_{3}, p_{4}\right)=\operatorname{dis}\left(p_{1}, p_{4}\right)=\frac{\pi}{2} \\
\operatorname{dis}\left(p_{1}, p_{5}\right) & =\operatorname{dis}\left(p_{2}, p_{5}\right)=\operatorname{dis}\left(p_{3}, p_{5}\right)=\operatorname{dis}\left(p_{4}, p_{5}\right)=1 \\
\operatorname{dis}\left(p_{1}, p_{3}\right) & =\operatorname{dis}\left(p_{2}, p_{4}\right)=2
\end{aligned}
$$

