Sky Garden

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Prof. Du and Prof. Pang plan to build a sky garden near the city of Allin. In the garden, there will be a plant maze consisting of straight and circular roads.

On the blueprint of the plant maze, Prof. Du draws n circles indicating the circular roads. All of them have center (0,0). The radius of the *i*-th circle is *i*.

Meanwhile, Prof. Pang draws m lines on the blueprint indicating the straight roads. All of the lines pass through (0,0). Each circle is divided into 2m parts with equal lengths by these lines.

Let Q be the set of the n + m roads. Let P be the set of all intersections of two different roads in Q. Note that each circular road and each straight road have two intersections.

For two different points $a \in P$ and $b \in P$, we define $dis(\{a, b\})$ to be the shortest distance one needs to walk from a to b along the roads. Please calculate the sum of $dis(\{a, b\})$ for all $\{a, b\} \subseteq P$.

Input

The only line contains two integers $n, m \ (1 \le n, m \le 500)$.

Output

Output one number – the sum of the distances between every pair of points in P.

Your answer is considered correct if its absolute or relative error does not exceed 10^{-6} .

Examples

standard input	standard output
1 2	14.2831853072
2 3	175.4159265359

Note

 $\begin{aligned} dis(p_1, p_2) &= dis(p_2, p_3) = dis(p_3, p_4) = dis(p_1, p_4) = \frac{\pi}{2} \\ dis(p_1, p_5) &= dis(p_2, p_5) = dis(p_3, p_5) = dis(p_4, p_5) = 1 \\ dis(p_1, p_3) &= dis(p_2, p_4) = 2 \end{aligned}$