Traveling Merchant

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Mr. Lawrence is a traveling merchant who travels between cities and resells products. Basically, to earn from it, he needs to buy products at a very low price and sell them at a higher price. Your task is to tell him whether there exists an endless traveling path that can earn money all the time.

To make things simple, suppose there are n cities named from 0 to $n-1$ and m undirected roads each of which connecting two cities. Mr. Lawrence can travel between cities along the roads. Initially he is located at city 0 and each of the city i has a starting price c_{i}, either Low or High. Due to the law of markets, the price status at city i will change (i.e. High price will become Low price, or vice versa) after he departs for a neighboring city j from i. (City j is a neighboring city of city i when one of the m roads connects city i and city j.) For some reasons (e.g. product freshness, traveling fee, tax), he must:

1. Start at city 0 and buy products at city 0 . It is guaranteed that c_{0} is Low.
2. When he arrives some city, he either sells products or buys products. It is not allowed for him to do nothing before he leaves the city.
3. After buying products at some city i, he must travel to some neighboring city j whose price c_{j} is High and sell the products at city j.
4. After selling products at some city i, he must travel to some neighboring city j whose price c_{j} is Low and buy the products at city j.

As a result, the path will look like an alternation between "buy at low price" and "sell at high price".
An endless earning path is defined as a path consisting of an endless sequence of cities p_{0}, p_{1}, \ldots where city p_{i} and city p_{i+1} has a road, $p_{0}=0$, and the price alternates, in other words $c_{p_{2 k}}=$ Low (indicates a buy-in) and $c_{p_{2 k+1}}=$ High (indicates a sell-out) for $k \geq 0$. Please note here $c_{p_{i}}$ is the price when arriving city p_{i} and this value may be different when he arrives the second time.

Your task is to determine whether there exists any such path.

Input

There are several test cases. The first line contains a positive integer T indicating the number of test cases. Each test case begins with two positive integers n and m indicating the number of cities and the number of roads.

The next line is a string c of length n containing ' H ' or ' L '. The i-th $(0 \leq i<n)$ charactor of c is H if the starting price c_{i} at city i is High. The i-th $(0 \leq i<n)$ charactor of c is L if the starting price c_{i} at city i is Low.
The i-th line $(1 \leq i \leq m)$ of the following m lines contains two different cities u_{i} and v_{i}, indicating a road between u_{i} and v_{i}.
The sum of the values of n over all test cases is no more than 200,000 . The sum of the values of m over all test cases is no more than 200,000 . For each test case, $c_{i} \in\{\mathrm{H}, \mathrm{L}\}$ holds for each $i \in\{0, \ldots, n-1\}$. c_{0} is always $L .0 \leq u_{i}, v_{i}<n$ and $u_{i} \neq v_{i}$ hold for each $i \in\{1, \ldots, m\}$. No two roads connect the same pair of cities.

Output

For each test case, output a line of "yes" or "no", indicating whether there exists an endless earning path.

Example

	standard input	
2		standard output
4	4	nos
LHLH		
0	1	
1	2	
1	3	
2	3	
3	3	
LHH		
0	1	
0	2	
1	2	

Note

In the first sample test case, the endless earning path is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots$. In the illustration, cities with Low price are filled with stripe.

In the second sample test case, Mr. Lawrence can only make one move from city 0 and after that all cities will have High price. Thus, no further moves can be made.

