Fast Mod

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Little Cyan Fish was learning an algorithmic lecture at the National Olympiad in Fishing Winter Camp (WC). In the lecture, a mysterious lecturer talked about the Barrett reduction, which is a reduction algorithm introduced in 1986 by P.D. Barrett.

To check if you understand how the algorithm works, Little Cyan Fish gives you a special number, M. Then, the mysterious lecturer defines the sequence $\{X\}, \{Y\}$ as follows:

 $X_n = (\alpha \cdot X_{n-1} + X_{n-2} \cdot Y_{n-1}) \mod M, n \ge 2$

 $Y_n = (\beta \cdot Y_{n-1} + Y_{n-2} \cdot X_{n-1}) \mod M, n \ge 2$

Now, Little Cyan Fish gives you the value of α , β , X_0 , Y_0 , X_1 , Y_1 , M and N. Your task is to calculate the value of $\sum_{i=2}^{N} X_i$ modulo M.

Input

The first line of the input contains five integers α , β , X_0 , Y_0 , X_1 , Y_1 , N, and M $(0 \le X_0, Y_0, X_1, Y_1, \alpha, \beta < M, 2 \le M \le 10^9, 2 \le N \le 10^8).$

Output

Output a single line contains a single integer, indicating the answer.

Example

standard input	standard output
114 514 1919 810 2024 112 154 12345678	10095098