Fast Mod

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Little Cyan Fish was learning an algorithmic lecture at the National Olympiad in Fishing Winter Camp (WC). In the lecture, a mysterious lecturer talked about the Barrett reduction, which is a reduction algorithm introduced in 1986 by P.D. Barrett.
To check if you understand how the algorithm works, Little Cyan Fish gives you a special number, M. Then, the mysterious lecturer defines the sequence $\{X\},\{Y\}$ as follows:

$$
\begin{gathered}
X_{n}=\left(\alpha \cdot X_{n-1}+X_{n-2} \cdot Y_{n-1}\right) \bmod M, n \geq 2 \\
Y_{n}=\left(\beta \cdot Y_{n-1}+Y_{n-2} \cdot X_{n-1}\right) \bmod M, n \geq 2
\end{gathered}
$$

Now, Little Cyan Fish gives you the value of $\alpha, \beta, X_{0}, Y_{0}, X_{1}, Y_{1}, M$ and N. Your task is to calculate the value of $\sum_{i=2}^{N} X_{i}$ modulo M.

Input

The first line of the input contains five integers $\alpha, \beta, X_{0}, Y_{0}, X_{1}, Y_{1}, N$, and M $\left(0 \leq X_{0}, Y_{0}, X_{1}, Y_{1}, \alpha, \beta<M, 2 \leq M \leq 10^{9}, 2 \leq N \leq 10^{8}\right)$.

Output

Output a single line contains a single integer, indicating the answer.

Example

standard input		standard output	
$114 \quad 514 \quad 1919 \quad 810 \quad 2024112 \quad 15412345678$	10095098		

