Gambler's Ruin

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

The football match between Bobo United (BU) and Bobo City (BC) is about to start. As an odds compiler working for a gambling company, Bobo needs to set odds for each team.

There are n gambles ready to gamble on this game, and each has an estimated p_i of BU's probability of winning. Here, we consider the setting that the gambling company previously collects all gamblers' information, so each p_i is known.

If you set odd x for BU and odd y for BC, then for each gambler i:

- if $p_i \cdot x \ge 1$, he/she will bet c_i dollars on BU.
- otherwise, if $(1 p_i) \cdot y \ge 1$, he/she will bet c_i dollars on BC.

Suppose the total amount of money bet on BU is s_x dollars and the total amount of money bet on BC is s_y dollars. If BU eventually wins the match, the company needs to pay out $s_x \cdot x$ dollars; if BC wins, the company needs to pay out $s_y \cdot y$ dollars. In the worst case, the profit of the gambling company is $s_x + s_y - max(s_x \cdot x, s_y \cdot y)$ dollars (the profit might be negative, meaning the company actually loses money).

Bobo needs to set the value of x and y to maximize the profit in the worst case, or otherwise, he might be fired by the company. Can you help him?

To Qualify	*
To Qualify - Paris Saint-Germain	2.22
To Qualify - Bayern Munich	1.63

An example of pot odds offered by the online gambling company. Source: some mysterious website

Input

The first line contains an integer n $(1 \le n \le 10^6)$, denoting the number of gamblers.

The *n* lines follow. The *i*-th $(1 \le i \le n)$ line contains a real number p_i and an integer c_i $(0 \le p_i \le 1, 1 \le c_i \le 10^8)$. with meaning already given in the statement. It is guaranteed p_i contains at most 6 digits after the decimal point.

Output

Output a number in one line, denoting the maximum profit the gambling company can get in the worst case by optimally setting the value of x and y. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6} . Formally, let your answer be a and the jury's answer be b. Your answer will be considered correct if $\frac{|a-b|}{\max(b,1)} \leq 10^{-6}$.

Examples

standard input	standard output
2	10.000000000
1 15	
0 10	
3	33.33333333
0.4 100	
0.5 100	
0.6 100	