Gambler's Ruin

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

The football match between Bobo United (BU) and Bobo City (BC) is about to start. As an odds compiler working for a gambling company, Bobo needs to set odds for each team.

There are n gamblers ready to gamble on this game, and each has an estimated p_{i} of BU's probability of winning. Here, we consider the setting that the gambling company previously collects all gamblers' information, so each p_{i} is known.
If you set odd x for BU and odd y for BC , then for each gambler i :

- if $p_{i} \cdot x \geq 1$, he/she will bet c_{i} dollars on BU .
- otherwise, if $\left(1-p_{i}\right) \cdot y \geq 1$, he/she will bet c_{i} dollars on BC .

Suppose the total amount of money bet on BU is s_{x} dollars and the total amount of money bet on BC is s_{y} dollars. If BU eventually wins the match, the company needs to pay out $s_{x} \cdot x$ dollars; if BC wins, the company needs to pay out $s_{y} \cdot y$ dollars. In the worst case, the profit of the gambling company is $s_{x}+s_{y}-\max \left(s_{x} \cdot x, s_{y} \cdot y\right)$ dollars (the profit might be negative, meaning the company actually loses money).
Bobo needs to set the value of x and y to maximize the profit in the worst case, or otherwise, he might be fired by the company. Can you help him?

To Qualify

To Qualify - Paris Saint-Germain 2.22

To Qualify - Bayern Munich
An example of pot odds offered by the online gambling company. Source: some mysterious website

Input

The first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$, denoting the number of gamblers.
The n lines follow. The i-th $(1 \leq i \leq n)$ line contains a real number p_{i} and an integer c_{i} $\left(0 \leq p_{i} \leq 1,1 \leq c_{i} \leq 10^{8}\right)$. with meaning already given in the statement. It is guaranteed p_{i} contains at most 6 digits after the decimal point.

Output

Output a number in one line, denoting the maximum profit the gambling company can get in the worst case by optimally setting the value of x and y. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6}. Formally, let your answer be a and the jury's answer be b. Your answer will be considered correct if $\frac{|a-b|}{\max (b, 1)} \leq 10^{-6}$.

Examples

standard input	standard output
2	10.0000000000
115	
010	
3	33.3333333333
0.4100	
0.5100	
0.6100	

