Spanning Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

We generate a spanning tree of n nodes according to the following random process:
Initially, there are no edges connecting the n nodes.
Then process the following $n-1$ operations:

- For the i-th operation, two integers a_{i} and b_{i} will be input, and it's guaranteed that the two nodes are not connected before.
- Select a node u_{i} from the connected block where a_{i} is located with uniform probability, then select a node v_{i} from the connected block where b_{i} is located with uniform probability, and then add an edge to connect u_{i} and v_{i}.

It can be proved that no matter which two nodes are selected in each operation, after all operations are processed, a spanning tree of n nodes will be formed.
Now given a spanning tree of n nodes. What is the probability that the spanning tree formed by the random process is exactly this spanning tree?
You only need to output the value of the probability modulo 998244353.
Please note that the probability could be 0 , which means that you can never generate this spanning tree.

Input

The first line contains a single integer $n\left(1 \leq n \leq 10^{6}\right)$, representing the number of nodes.
For the following $n-1$ lines, each line contains two integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$, representing the i-th operation, and it's guaranteed that the two nodes are not connected before.
For the following $n-1$ lines, each line contains two integers $c_{i}, d_{i}\left(1 \leq c_{i}, d_{i} \leq n, c_{i} \neq d_{i}\right)$, representing an edge of the given spanning tree, and it's guaranteed that the given edges forms a spanning tree.

Output

One line containing one integer, representing the value of the probability modulo 998244353 .

Example

	standard input	standard output
3		499122177
1	2	
1	3	
1	2	3

