Minimum Manhattan Distance

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 64 megabytes

Recall that on a two-dimensional plane, the Manhattan distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. If both coordinates of a point are all integers, then we call this point an integer point.

Given two circles C_{1}, C_{2} on the two-dimensional plane, and guaranteed the x-coordinates of any point in C_{1} and any point in C_{2} are different, and the y-coordinates of any point in C_{1} and any point in C_{2} are different.

Each circle is described by two integer points, and the segment connecting the two points represents a diameter of the circle.

Now you need to pick a point $\left(x_{0}, y_{0}\right)$ inside or on the C_{2} such that minimize the expected value of the Manhattan distance from $\left(x_{0}, y_{0}\right)$ to a point inside C_{1}, if we choose this point with uniformly probability among all the points with a real number coordinate inside C_{1}.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$, representing the number of test cases.
Then follow the descriptions of each test case.
The first line contains 4 integers $x_{1,1}, y_{1,1}, x_{1,2}, y_{1,2}$, representing the segment connecting $\left(x_{1,1}, y_{1,1}\right)$ and $\left(x_{1,2}, y_{1,2}\right)$ is a diameter of the circle C_{1}.

The second line contains 4 integers $x_{2,1}, y_{2,1}, x_{2,2}, y_{2,2}$, representing the segment connecting $\left(x_{2,1}, y_{2,1}\right)$ and $\left(x_{2,2}, y_{2,2}\right)$ is a diameter of the circle C_{2}.
All the coordinates input are integers in the range $\left[-10^{5}, 10^{5}\right]$.

Output

For each test case, output a single line with a real number - the minimum expected Manhattan distance. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6}. That is, if your answer is a, and the jury's answer is b, then the solution will be accepted if $\frac{|a-b|}{\max (1,|b|)} \leq 10^{-6}$.

Example

			standard input	standard output	
1				4.2639320225	
0	0	2	1		
4	5	5	2		

