Problem C. Keyboard

Input file:
Output file: standard output
Time limit: $\quad 2$ seconds
Memory limit: $\quad 512$ mebibytes

On the keyboard of Bytherine, the famous Bithuanian programmer, Backspace has been broken. This button is of great importance to her, as due to her sloppiness, she often makes mistakes in names of variables and has to correct them using this ill-fated key. On the other hand, she considers CapsLock pretty much useless. Indeed, to type a capital letter, you can obviously press a Shift button. This is why she swapped functionality of CapsLock and Backspace. Ever since, she has been using CapsLock button to delete recently typed characters.
But this fact doesn't spell the end of Bytherine's problems. A cunning hacker has been trying to steal Bytherine's password. He managed to intercept the signal emitted by the keyboard. Bytherine, unaware of danger, typed her password on the keyboard. This is something the hacker has been waiting for. Now he has everything that Bytherine typed on her keyboard.
Bytherine, to type her password, used only small and capital letters of English alphabet and CapsLock button. To enter her password, she pressed the CapsLock key every time she wanted to delete the last entered character. In particular, she did not press it when there had not been any entered character yet.
On the other hand, no character was removed in the hacker's editor. Every time Bytherine pressed the CapsLock button, only the writing mode changed. After every odd pressing of the CapsLock button, every lowercase letter entered by Bytherine was changed to a capital letter and vice versa. After every even pressing of the CapsLock button, the behaviour of the keyboard returned to normal.

For example, if Bytherine pressed the following keys: P, CapsLock, t, A, CapsLock, a, k, she would type the word tak, but the hacker would see the word PTaak.
Hacker's editor displays the word s. Your task is to write a program, which for every n popular passwords $z_{1}, z_{2}, \ldots, z_{n}$ will say if it can be Bytherine's password.

Input

The first line of the input contains $s(1 \leq|s| \leq 1000000)$ - the word which is displayed in the hacker's editor. The second line contains one integer $n(1 \leq n \leq 1000000)$ - the number of popular passwords to check. The i-th of the following n lines contains exactly one non-empty password z_{i}. The sum of lengths of words z_{i} does not exceed 1000000 . All words in the input consist of only capital and small letters of the English alphabet.

Output

You should write n lines; the i-th of them should contain the word YES or NO, depending on whether it is possible that the password of Bytherine is z_{i}.

Example

standard input	
PTaak	standard output
4	YES
PA	YES
tak	NO
ptak	
nie	

