Problem D. Machine Learning

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

Lately, Byton has found interest in the science describing methods of teaching computers identifying patterns in data and drawing conclusions from them – *the machine learning*.

During his research in this field, he had to investigate properties of some complicated function f. He computed its value in a number of points x_1, x_2, \ldots, x_n , obtaining results y_1, y_2, \ldots, y_n .

He would like to approximate f by some **continuous** function g, composed of two linear parts; formally for some $x \in \mathbb{R}$, g should be linear for arguments less than x and linear for arguments greater than x.

By ton would like to achieve a faithful approximation of f. He would like to minimize the mean squared error:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - g(x_i))^2.$$

Input

The first line of the input contains a single integer n $(1 \le n \le 100\,000)$. Each of the next n lines contain two integers x_i, y_i $(0 \le x_i \le 1\,000\,000, 0 \le y_i \le 1000)$. The numbers x_i are pairwise different.

Output

You should print a single real number – the minimum possible mean squared error he is able to achieve. Your answer will be accepted if its absolute error does not exceed 1.

Example

standard input	standard output
5	0.8333333333333
0 1	
2 0	
1 3	
4 4	
3 2	
7	0.0659340659341
0 0	
1 1	
2 2	
3 4	
4 2	
5 1	
6 0	

Note

In the first example, the optimal mean squared error is $\frac{5}{6}$. You can get it by fixing on the left the linear function $-\frac{x}{2} + \frac{11}{6}$ and on the right, the linear function 2x - 4.

In the second example the minimum mean squared error is $\frac{6}{91}$. The function can be constructed from lines $\frac{16}{13}x - \frac{2}{13}$ and $-\frac{16}{13}x + \frac{94}{13}$.

