Problem D. Machine Learning

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
256 mebibytes

Lately, Byton has found interest in the science describing methods of teaching computers identifying patterns in data and drawing conclusions from them - the machine learning.
During his research in this field, he had to investigate properties of some complicated function f. He computed its value in a number of points $x_{1}, x_{2} \ldots, x_{n}$, obtaining results $y_{1}, y_{2}, \ldots, y_{n}$.
He would like to approximate f by some continuous function g, composed of two linear parts; formally for some $x \in \mathbb{R}, g$ should be linear for arguments less than x and linear for arguments greater than x.
Byton would like to achieve a faithful approximation of f. He would like to minimize the mean squared error:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2} .
$$

Input

The first line of the input contains a single integer $n(1 \leq n \leq 100000)$. Each of the next n lines contain two integers $x_{i}, y_{i}\left(0 \leq x_{i} \leq 1000000,0 \leq y_{i} \leq 1000\right)$. The numbers x_{i} are pairwise different.

Output

You should print a single real number - the minimum possible mean squared error he is able to achieve. Your answer will be accepted if its absolute error does not exceed 1.

Example

	standard input	standard output
5		0.8333333333333
0	1	
2	0	
1	3	
4	4	
3	2	
7		
0	0	0.0659340659341
1	1	
2	2	
3	4	
4	2	
5	1	
6	0	

Note

In the first example, the optimal mean squared error is $\frac{5}{6}$. You can get it by fixing on the left the linear function $-\frac{x}{2}+\frac{11}{6}$ and on the right, the linear function $2 x-4$.

In the second example the minimum mean squared error is $\frac{6}{91}$. The function can be constructed from lines $\frac{16}{13} x-\frac{2}{13}$ and $-\frac{16}{13} x+\frac{94}{13}$.

