
Uni
Cup

The 2nd Universal Cup
Stage 19: Estonia, January 20-21, 2024

Problem D. Filesystem
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

The Red Monster is preparing a contest for the Overly Complicated Problem Colloquium. The Red
Monster has a number of files that need to be uploaded to the contest preparation system, Polytope. All
of the files are in the same folder; each file has a creation date and a file name. All file names and creation
dates are distinct.
The interface for uploading files looks like this:

File name Creation date
checker.cpp 17.03.2023
clever_generator.cpp 18.09.2022
doit.sh 15.12.2022
examples.txt 10.12.2021
generator.cpp 07.05.2021
monsters.Inc.3D.2001.1080p.BluRay.Half-OU.DTS-ES.x264-HDMaNiAcS.avi 17.10.2021
not_a_virus.exe 07.06.2022
sol.cpp 18.06.2021
spxG7HoMSMHH225xjadbnA.tmp 06.07.2023
tutorial.tex 03.02.2021
xxx_my_password_DO_NOT_HACK.docx 10.01.2023
validator.cpp 15.01.2023

In one operation, the Red Monster does all of the following:

• Sorts the files in the folder, either alphabetically by file name or by the creation date.

• Chooses a contiguous segment of files and uploads those files to Polytope.

Note that files are not deleted after they are uploaded. Only a subset of files has to be uploaded to
Polytope. The other files may be embarrassing and therefore must not be uploaded. For example, in the
table above, only the files with bold file names should be uploaded; the rest have clearly nothing to do
with the contest.
Each file must only be uploaded once, that is, there should not be any file that is uploaded in several
operations. What is the minimum number of operations needed to upload exactly the necessary files?

Input
The first line contains one integer t (1  t  1000) — the number of test cases. t test cases follow. Each
test case is described as follows.
Let n be the total number of files. We index the files 1 . . . n and assume that the order of files when
sorting by file name is 1, 2, 3, . . . , n.
The first line of the the test case consists of two integers n and k (1  k  n  1000) — the total number
of files and the number of files that need to be uploaded.
The second line of the the test case consists of k integers u1, u2, . . . , uk (1  ui  n, for all i; all ui are
pairwise distinct). These are the indices of the files that must be uploaded.
The third line consists of a permutation p1, p2, . . . , pn of 1 . . . n. This indicates that the order of files when
sorted by creation date is p1, p2, . . . , pn.
It is guaranteed that the sum of n over all test cases doesn’t exceed 1000.

Page 6 of 17



Uni
Cup

The 2nd Universal Cup
Stage 19: Estonia, January 20-21, 2024

Output
For each test case, print the answer on a separate line — a single integer, the minimum number of
operations needed to upload all files.

Example
standard input standard output

2
12 8
2 5 8 3 4 10 12 1
10 5 8 6 4 7 2 3 11 12 1 9
8 4
1 3 5 7
1 4 5 8 7 6 3 2

3
4

Note
The first example test case corresponds to the example in the statement. Ordered by creation date, it
looks as follows:

ID File name Creation date
10 tutorial.tex 03.02.2021
5 generator.cpp 07.05.2021
8 sol.cpp 18.06.2021
6 monsters.Inc.3D.2001.1080p.BluRay.Half-OU.DTS-ES.x264-HDMaNiAcS.avi 17.10.2021
4 examples.txt 10.12.2021
7 not_a_virus.exe 07.06.2022
2 clever_generator.cpp 18.09.2022
3 doit.sh 15.12.2022

11 xxx_my_password_DO_NOT_HACK.docx 10.01.2023
12 validator.cpp 15.01.2023
1 checker.cpp 17.03.2023
9 spxG7HoMSMHH225xjadbnA.tmp 06.07.2023

Observe that if we only ever sorted by the file name, we would need to use 4 operations. The same holds
if we only ever sorted by creation date. A solution in 3 operations looks as follows:

• Sort by file name. Upload files 2, 3 and 4 (clever_generator.cpp, doit.sh and examples.txt). Note
that if we also uploaded file 5 (generator.cpp) in this step, we would mess up the next step.

• Sort by creation date. Upload files 10, 5 and 8 (tutorial.tex, generator.cpp and sol.cpp).

• Sort by creation date. Upload files 12 and 1 (validator.cpp and checker.cpp).

There are other solutions with 3 operations. It can be proven that there is no solution with 2 operations.
In the second example test case, we want to upload exactly the files with odd indices. Whichever way we
sort, there is never even a situation where two files we want to upload are consecutive. Therefore, every
file must be uploaded separately.

Page 7 of 17


