

Problem E. Freshman's Dream

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Everyone knows that $(a + b)^n$ is never equal to $a^n + b^n$ for positive integers a, b and n if $n \ge 2$. Or is it? Look again.

Given an integer $n \ge 2$, you have to find positive integers a and b such that $(a + b)^n$ is equal to $a^n + b^n$, where every symbol is interpreted as it is in C++, including operator precedence. In other words, you have to find a and b such that

$$(a+b)\oplus n = a\oplus (n+b)\oplus n$$

holds, where \oplus is the bitwise XOR operation.

Input

The first line contains one integer t $(1 \le t \le 10^5)$ — the number of test cases. t test cases follow. Each test case consists of one integer n $(2 \le n < 2^{60})$.

Output

For each test case, print the answer on a separate line as follows.

- If there is no solution, print -1.
- Otherwise, print positive integers a and b $(1 \le a, b < 2^{60})$ such that the equation in the problem statement holds. Under the constraints of the problem, it can be proven that if there is a solution, then there is also a solution with $a, b < 2^{60}$. If there are multiple solutions, you can print any one of them.

Example

standard input	standard output
5	1 1
2	-1
3	3 5
6	7 3
10	11 39
18	