Problem E. Freshman's Dream

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 256$ megabytes
Everyone knows that $(\mathrm{a}+\mathrm{b})^{\wedge} \mathrm{n}$ is never equal to $\mathrm{a}^{\wedge} \mathrm{n}+\mathrm{b}^{\wedge} \mathrm{n}$ for positive integers a, b and n if $n \geq 2$. Or is it? Look again.
Given an integer $n \geq 2$, you have to find positive integers a and b such that $(\mathrm{a}+\mathrm{b})^{\wedge} \mathrm{n}$ is equal to $\mathrm{a}^{\wedge} \mathrm{n}$ $+b^{\wedge} n$, where every symbol is interpreted as it is in $\mathbf{C}++$, including operator precedence. In other words, you have to find a and b such that

$$
(a+b) \oplus n=a \oplus(n+b) \oplus n
$$

holds, where \oplus is the bitwise XOR operation.

Input

The first line contains one integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. t test cases follow.
Each test case consists of one integer $n\left(2 \leq n<2^{60}\right)$.

Output

For each test case, print the answer on a separate line as follows.

- If there is no solution, print -1 .
- Otherwise, print positive integers a and $b\left(1 \leq a, b<2^{60}\right)$ such that the equation in the problem statement holds. Under the constraints of the problem, it can be proven that if there is a solution, then there is also a solution with $a, b<2^{60}$. If there are multiple solutions, you can print any one of them.

Example

\left.| | standard input | standard output | |
| :--- | :--- | :--- | :---: |
| 5 | 1 | 1 | |
| 2 | -1 | | |
| 3 | 3 | 5 | |
| 10 | 7 | 3 | |$\right]$

