

Problem G. LCA Counting

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You are given a rooted tree with n vertices and ℓ leaves. The vertices are indexed $1 \dots n$ and the root vertex is 1. Exactly k leaves u_1, \dots, u_k are chosen. Here, the root of the tree isn't considered a leaf, even if it has only one neighbor. What is the maximum cardinality of the set

 $\{ \operatorname{lca}(u_i, u_j) \mid 1 \le i, j \le k \}?$

Here, lca(u, v) refers to the lowest common ancestor of vertices u and v. Solve this problem for each k in $1 \dots \ell$, where ℓ is the number of leaves in the tree.

Input

The first line of the input consists of a single integer $n \ (2 \le n \le 2 \cdot 10^5)$ — the number of vertices.

The second line consists of n-1 integers p_2, p_3, \ldots, p_n $(1 \le p_i < i)$, denoting an edge between p_i and i.

Output

Let ℓ be the number of leaves in the tree.

Print ℓ integers on a single line, the k-th of which is the answer to the problem if exactly k leaves are chosen.

Example

standard input	standard output
7	1 3 5 6
1 1 2 4 2 2	