Customs Controls 2

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Look how short the statement is! This must be the easiest problem.

Given a directed acyclic graph G, you need to assign each vertex i a positive integer weight w_i . Your goal is to make all paths from 1 to n of equal length.

A directed acyclic graph is a graph with directed edges and without cycles.

The length of a path is defined as the sum of the weights of vertices on the path.

Input

The first line contains a positive integer T ($1 \le T \le 10^4$), denoting the number of test cases.

For each testcase:

- The first line contains two integers n, m $(1 \le n \le 2 \cdot 10^5, 1 \le m \le 5 \cdot 10^5)$, denoting the number of vertices and edges.
- The next m lines each contains two integers u, v, denoting an edge from u to v.

It is guaranteed that $\sum n \leq 2 \cdot 10^5$, $\sum m \leq 5 \cdot 10^5$.

It is guaranteed that the graph contains no multiple edges, no self-loops and no cycles. It is also guaranteed that every vertex is reachable from 1 and can reach n.

Output

For each testcase, if there is no solution, then output "No" on a single line. Otherwise, output "Yes" on the first line, then n positive integers w_1, w_2, \ldots, w_n $(1 \le w_i \le 10^9)$ on the second line.

Examples

standard input	standard output
2	No
3 3	Yes
1 2	1 1 2 3 3 2 1 1
1 3	
2 3	
8 9	
1 2	
1 3	
1 4	
2 5	
3 6	
4 7	
5 8	
6 8	
7 8	
2	Yes
11 16	1 1 1 1 2 1 2 1 3 1 1
1 2	No
1 3	
1 4	
1 5	
2 6	
4 6	
3 7	
4 7	
5 8	
6 8	
2 9	
3 9	
7 10	
8 10	
9 11	
10 11	
8 10	
1 2	
1 3	
2 4	
3 5	
3 6	
4 6	
2 7	
5 7	
6 8	
7 8	