Infection

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

A highly propagating bacterium infects a tree of n nodes (with n-1 edges, no cycles). These nodes are indexed from 1 to n.

Exactly one node will be infected at the beginning. Each node on the tree has an initial susceptibility weight a_i , which represents that node *i* has a probability of $\frac{a_i}{\sum_{i=1}^n a_i}$ to become the initial infected node

of the tree.

In addition, each node has an infection probability p_i , which represents its probability of being infected by adjacent nodes.

Specifically, starting from the initial infected node, if a node is infected, the uninfected node x that is adjacent to it will have a probability of p_x to become a new infected node, and then x can continue to infect its adjacent nodes.

Now, your task is to calculate the probability that exactly k nodes are eventually infected. You need to output an answer for each k = 1, ..., n.

You need to output the answer modulo $10^9 + 7$, which means if your answer is $\frac{a}{b} (\text{gcd}(a, b) = 1)$, you need to output $a \cdot b^{-1} \mod 10^9 + 7$, where $b \cdot b^{-1} \equiv 1 \pmod{10^9 + 7}$.

Input

The first line contains an integer $n \ (2 \le n \le 2000)$, denoting the number of nodes of the tree.

The next n-1 lines, each line contains two positive integers u and v $(1 \le u, v \le n)$, denoting that there is an edge (u, v) on the tree.

Next n lines, the *i*-th line contains three positive integers a_i, b_i, c_i , where a_i means as above and $p_i = \frac{b_i}{c_i}$.

It is guaranteed that $1 \le a_i, b_i, c_i \le 10^9, \sum_{i=1}^n a_i \le 10^9, b_i \le c_i, \gcd(b_i, c_i) = 1.$

Output

Output n lines, each line contains single integer. The integer on the *i*-th line should be the answer modulo $10^9 + 7$ when k = i.

Example

standard input	standard output
5	208333335
2 1	16666668
5 2	16666668
3 2	95000007
4 3	508333337
2 1 5	
3 1 2	
2 1 1	
2 1 1	
3 1 2	