Middle Point Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
256 megabytes

You're given a simple connected undirected graph with n vertices and m edges.
For each vertex, we assign it a random point $\left(x_{i}, y_{i}, z_{i}\right)$, where x_{i}, y_{i}, z_{i} are independent uniform random real numbers in $[0,1]$.
For each edge, its coordinate is defined as the middle point of its two ends' coordinates. The middle point of (a, b, c) and (x, y, z) is ($\frac{a+x}{2}, \frac{b+y}{2}, \frac{c+z}{2}$).
Among these $n+m$ points, you are to find the expected number of ways to choose 4 coplanar distinct points. Print the answer modulo $10^{9}+7$.

Input

The first line contains a positive integer $T\left(1 \leq T \leq 10^{4}\right)$, denoting the number of test cases.
For each testcase:

- The first line contains two integers $n, m,\left(1 \leq n \leq 2 \cdot 10^{5}, n-1 \leq m \leq 5 \cdot 10^{5}\right)$ denoting the number of vertices and edges.
- The next m lines each contains two integers $u, v(1 \leq u, v \leq n)$, denoting an edge connecting u and v.

It is guaranteed that $\sum n \leq 2 \cdot 10^{5}, \sum m \leq 5 \cdot 10^{5}$.
An empty line is placed before each testcase for better readability.

Output

For each testcase, output one line containing a single integer denoting the answer module $10^{9}+7$.

Example

	standard input	
3		standard output
7	18	893
2	1	0
2	3	
3	4	
2	5	
6	4	
7	5	
6	5	
3	1	
1	5	
1	7	
7	3	
2	6	
2	7	
4	5	
5	3	
4	2	
6	7	
6	3	
5	7	
1	2	
2	3	
4	2	
5	1	
3		
1		

