Station of Fate

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There are n people standing in m stations, forming m queues.
You don't know which person is in which station, or in what order they are standing in queue, so you want to count the number of different schemes. Two schemes are considered different, if and only if there exists a station whose queue consists of different people, or has different orders.
Calculate the number of different schemes modulo 998244353.

Input

The first line contains an integer $T(1 \leq T \leq 100)$, denoting the number of test cases. Then T test cases follow.
Each test case contains a single line containing two integers n, $m\left(1 \leq m \leq n \leq 10^{5}\right)$.

Output

For each test case, output the number of different schemes modulo 998244353.

Example

	standard input	standard output	
2	2	12	
6	3	7200	

