Yet Another Simple Math Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given an integer N. Find the number of pairs of positive integers (a, b) that satisfy both of the following conditions:

- $1 \le a, b \le N$
- There exist positive integers (x, y) such that $x + y^2 = a$ and $x^2 + y = b$

Given T test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

Tcase₁
case₂
:
case_T

Each test case case_i $(1 \le i \le T)$ is given in the following format:

N

- All values in the input are integers.
- $1 \le T \le 10^5$
- $1 \le N \le 10^{18}$

Output

Output T lines. The *i*-th line $(1 \le i \le T)$ should contain the answer for the *i*-th test case.

Example

standard input	standard output
3	4
6	0
1	83
101	

Note

In the first test case, there are four pairs (a, b) that satisfy the conditions: (a, b) = (2, 2), (3, 5), (5, 3), (6, 6). For example, for (a, b) = (3, 5), choosing (x, y) = (2, 1) satisfies $x + y^2 = 3 = a$ and $x^2 + y = 5 = b$, fulfilling the given conditions.