Yet Another Simple Math Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

You are given an integer N. Find the number of pairs of positive integers (a, b) that satisfy both of the following conditions:

- $1 \leq a, b \leq N$
- There exist positive integers (x, y) such that $x+y^{2}=a$ and $x^{2}+y=b$

Given T test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

```
T
case
Case2
\vdots
case}\mp@subsup{T}{}{\prime
```

Each test case case ${ }_{i}(1 \leq i \leq T)$ is given in the following format:

N

- All values in the input are integers.
- $1 \leq T \leq 10^{5}$
- $1 \leq N \leq 10^{18}$

Output

Output T lines. The i-th line $(1 \leq i \leq T)$ should contain the answer for the i-th test case.

Example

	standard input	
3	4	standard output
6	0	
1	83	

Note

In the first test case, there are four pairs (a, b) that satisfy the conditions: $(a, b)=(2,2),(3,5),(5,3),(6,6)$. For example, for $(a, b)=(3,5)$, choosing $(x, y)=(2,1)$ satisfies $x+y^{2}=3=a$ and $x^{2}+y=5=b$, fulfilling the given conditions.

